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ABSTRACT

In light of the promising results obtained by driving a low-

complexity digital waveguide (DW) violin model with syn-

thetic bowing gestures 1, we currently explore the possibil-

ities of combining DW and finite-difference time-domain

(FDTD) frameworks to construct refined, yet efficient phys-

ical models of string quartet instruments. We extend pre-

vious approaches by combining a finite-width bow-string

interaction model with a dynamic friction model based on

simulating heat diffusion along the width of the bow. Bow

hair dynamics are incorporated in the bow-string interaction,

which includes two transversal string polarizations. The

bridge termination is realized using an efficient, passive

digital reflectance matrix obtained from fitting admittance

measurements. In this paper we present and discuss the

current status and future directions of our modeling work.

1. INTRODUCTION

Bowed strings can be considered as one of the key chal-

lenges in computer-generated instrumental sound. In an

attempt to provide means to generate realistic synthetic

bowed-string performances by computer, for a number of

years we have been interested in measuring, modeling, and

synthesizing bowing gestures [1]. Be it via sample-based

techniques incorporating spectral-domain sound transfor-

mation, or via physical modeling synthesis, the use of syn-

thetic bowing gestures to drive violin sound generation has

proved to dramatically enhance the realism of generated per-

formances 1 [2]. In consideration of the promising results

recently obtained by driving a simplified digital waveguide

physical model [3] with rendered bow strokes, we are inter-

ested in constructing refined bowed-string models that can

serve as a basis for further developing bowing synthesis.

Today, the physics of bowed strings has been studied for

over 150 years. Since Helmholtz [4] described the ideal

bowed-string motion in 1862, many scientists have pursued

research towards understanding and modeling the sound

production mechanisms behind such expressive instruments.

Here we will provide a very brief review. As early as 1914,

1 http://ccrma.stanford.edu/˜esteban/bowed/
demo14.wav (digital waveguide model)
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Raman [5] proposed the first algorithm for bowed-string

motion, modeling friction force as a nonlinear function of

sliding velocity. Without a computer, he was able to predict

most string vibration regimes nowadays understood. Later,

Friedlander [6] and Keller [7] simulated Raman’s model in

a computer, proposing a graphical solution to the friction

nonlinearity. A next important step was performed by McIn-

tyre and Woodhouse [8], who further developed Friedlander

solution, adding a hysteresis rule for solving the nonlinear-

ity. Then, real-time simulation was made possible by Smith

[9, 10], who reformulated bow-string interaction as a scatter-

ing junction having a precomputed (noniterative) nonlinear

reflection coefficient, and developed efficient techniques to

simulate instrument bodies as efficient IIR digital filters. A

monumental work by Pitteroff and Woodhouse [11] intro-

duced a finite-width bow-string interaction model including

hair dynamics, demonstrating partial slips for the first time.

Later, a first dynamic friction model based on simulating

the bow-string contact temperature was introduced in [12]

and later applied in [13] to a point-bow model, providing

simulations that qualitatively matched the hysteretic behav-

ior of friction as observed experimentally through dynamic

measurements. For an excellent review of models up to

2004, please refer to [14]. Since then, the introduction of

vertical string polarization (perpendicular to the bow direc-

tion) into a point-bow model with static friction [15] can be

considered a further relevant contribution.

In this paper, we report on our own progress towards a

further refinement of current bowed-string simulation ap-

proaches. We introduce a model combining a finite-width

bow-string interaction model with a dynamic friction model

based on simulating heat diffusion along the width of the

bow. Bow hair dynamics are incorporated in the bow-string

interaction, which includes two transversal string polariza-

tions. The strings are coupled at a bridge termination, which

is realized via an efficient, passive digital reflectance matrix

obtained from fitting admittance measurements. The rest of

the paper is structured as follows. In Section 2 we provide

an overview of our framework. Section 3 describes our ap-

proach to temperature-dependent friction, while Section 4

introduces bow-string interaction. In Section 5 we describe

our model for the bridge admittance. Section 6 presents

some preliminary results using our model, and we finally

conclude by providing an outlook to further developments.

2. OVERVIEW OF THE MODEL

We develop a bowed-string synthesis framework that com-

bines temperature-driven dynamic friction and finite-width
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Figure 1: Overview of our model, combining digital waveguide and finite-difference approximations.

bow-string interaction. A schematic illustration is provided

in Figure 1. Our framework considers two polarizations

of string transverse waves: horizontal (parallel to the bow-

ing direction) and vertical (perpendicular to the bowing

direction). The DW framework is used for propagation.

Traveling losses in both polarizations are represented as

cascaded IIR filters at the end of each direction of the DW.

Horizontal and vertical transverse waves get coupled at

the nut, at the bridge, and at the the finite-width bow-string

contact. At the nut, both polarizations of all four strings

get coupled through a lumped 2× 2 admittance matrix with

real entries, leading to a reflectance. At the bridge, both po-

larizations of all four strings get coupled through a lumped

2×2 admittance matrix that represents the instrument body,

and contains complex, frequency-dependent elements. The

corresponding bridge reflectance matrix is realized via two

IIR digital filters, each in parallel form and representing

one polarization, as detailed in Section 5.

In an equivalent manner as introduced in [11], bow-string

interaction is represented by a line of nodes, each modeling

an equivalent hair-string contact. Here, bow and string in-

teract in both polarizations: nonlinear interaction happens

on the horizontal plane, while linear interaction happens

on the vertical plane. Horizontal-vertical coupling happens

through the (vertical) normal force exerted by the string

on the hair. In between nodes, we use the traveling wave

solution provided by DW. Interaction in the horizontal plane

takes place through a nonlinear friction characteristic that

is solved at each node. The coefficient of friction is dy-

namically modulated by temperature changes happening

along the nodes in the bow-string contact. Hair compliance

and elasticity are included in each node via FDTD, leading

to a nonlinearity that can be solved graphically a la Fried-

lander. In the vertical plane, each node is represented as

a lumped junction each with a series-loaded admittance in

the form of a mass-loaded parallel spring-dashpot. Details

of bow-string interaction are given in Section 4.

Excess temperature along the width of the string-bow

contact is modeled via a non-homogeneous diffusion ex-

pression, with two additional terms (see Section 3). Our

aim here is to propose a model of dynamic friction which,

by providing a hysteric behavior that is qualitatively com-

parable to that demonstrated by in [12] or in [16], enables

finite-width, multi-hair simulation, and is efficient and flexi-

ble enough to serve as a platform for investigation on sound

synthesis. Temperature is increased via the conduction of

heat due to the sliding friction happening at any of the nodes

along the bow width, with the source term of the diffusion

expression fed by sliding velocity and normal force. Tem-

perature loss is caused either by convection during sliding,

or by diffusion.

For the moment, we are ignoring the effect of torsional

string vibration or the body of the bow. Moreover, we

acknowledge that the individual equivalent hairs are repre-

sented as independent mechanical systems, ignoring any

hair-hair interaction.

3. THERMAL FRICTION

Temperature of the string section in contact with the bow

hairs is simulated by spatio-temporal discretization of the

one-dimensional, non-homogeneous diffusion relation in

Eq. (1), where T (x, t) represents the relative temperature

(with respect to ambient temperature) at position x along

the string at time t, α is the diffusivity, vx
∆

is the equivalent

hair-string differential (sliding) transversal velocity, and

F x
s is the equivalent hair-string friction force. Inspired by

the convolution integral approach introduced in [12], we

re-formulate the problem to enable one-dimensional heat

diffusion and to avoid expensive convolutions. The first

two terms of Eq. (1) correspond to the homogeneous dif-

fusion, while the third and fourth respectively correspond

to losses by convection with the rosin, and temperature in-

crease (conduction) by friction. Parameters CC and CH

can be computed as a function of a specific heat capacity

governing heat transfer at the hair-string interface. Param-
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Figure 2: Friction dependence on temperature. Simplified,

piece-wise linear approximation.

eter CC modulates temperature loss by convection, while

parameter CH modulates temperature increase by friction.

∂T (x, t)

∂t
− α

∂2T (x, t)

∂x2
+ CCT (x, t)|v

x
∆(x, t)| =

CH |F x
s (x, t)v

x
∆(x, t)|

(1)

Each of the equivalent hair-string segments under simu-

lation is either sticking or slipping. During the sticking

phase, the differential velocity vx
∆

remains zero, and Eq. (1)

becomes the relation of homogeneous diffusion, enabling

the representation of heat diffusion along the string seg-

ment. During the slipping phase, the non-zero value of vx
∆

brings in the contribution of the other two terms, leading to

a temperature increase moderated by convection.

When discretizing partial derivatives for simulation, a

forward difference scheme was used for approximating

time derivatives, while a centered difference was chosen

for approximating space derivatives. Stability analysis of

the resulting update equation leads to the requirement in

Eq. (2). Given that spatial discretization ∆x is imposed

by the number of equivalent bow hair-string segments used

for simulation of the bow-string interaction (see Section

4), the stability requirement imposes a maximum temporal

discretization ∆tmax for a given diffusivity α.

α
∆t

∆x2
<

1

2
(2)

For a given bow width and spatial discretization, the total

number of nodes used for simulation of Eq. (1) will result

from also accounting for the length of the string segment

for which heat diffusion is computed beyond the bow. At

the boundaries of such segments, relative temperature is

imposed to be zero. For the nodes corresponding to the

width of the bow, string sliding velocity and force (see

Section 4) are collected each time step and used in terms

three and four of Eq. (1).

The coefficient of friction µ governing hair-string interac-

tion is modeled in terms of a simple relation with tempera-

ture at each equivalent hair-string segment (see Figure 2),

following the qualitative nature of the experimental results

introduced in [12] and applied in [13].

‐ ‐             
‐  

SLIP

STICK

SLIP

Figure 3: Nonlinear bow-string interaction: graphical so-

lution a la Friedlander, accounting for hair elasticity and

compliance.

4. BOW-STRING INTERACTION

4.1 Horizontal plane

For each node, hair-string interaction in the horizontal plane

(polarization parallel to the bowing direction) is tackled via

(i) using a finite-difference approximation to simulate hair

dynamics, and (ii) graphically solving the nonlinear friction

problem by means of a modified Friedlander construction

[6] that accounts for hair dynamics in a straightforward

manner. In between nodes, we rely on the traveling wave so-

lution provided by DW. For each node (i.e., equivalent hair)

in the bow-string segment, let us define: vxs as the trans-

verse horizontal string velocity; vx,ps as the the transverse

horizontal string velocity as computed by only taking into

account the incoming waves arriving from adjacent nodes

via DW; vxh as the longitudinal velocity of the equivalent

hair as relative to longitudinal bow velocity vb; v
x
∆

as the

hair-string differential velocity; F x
s as the string transverse

horizontal (friction) force; and Zs as the string transverse

impedance. At all times, the string motion obeys

vxs = vx,ps +
F x
s

2Zs

, (3)

with
|F x

s | < µFN (STICK),

F x
s = sign(vx∆)µFN (SLIP),

(4)

where µ is the temperature-dependent friction coefficient,

and FN is the normal force exerted by the equivalent string

segment on the equivalent hair. Moreover, defining vx
∆
=

vxs − (vb + vxh) we have

vxs = vb + vxh (STICK). (5)

Now, in order to express vxs in Eq. (5) in terms of F x
s , we

model the dynamics of vxh via a massless (parallel) spring-

dashpot [11]. The differential equation governing such a

system can be written as

F x
s (t) = −kh

∫

vxh(t)dt− chv
x
h(t), (6)

where kh and ch respectively correspond to the equivalent

hair elasticity and compliance constants. By trapezoidal
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Figure 4: Vertical admittance of the bow as seen from the

string (vertical polarization). Each junction represents one

equivalent hair-string segment.

approximation of the integral term, we arrive at

vxh = −aF x
s + b, (7)

where a is a positive constant and b depends on previous

values of F x
s and vxh. Finally, combining Eq. (5) and (7) we

have

vxs = −aF x
s + vb + b (STICK), (8)

which, combined with Equations (3) and (4), forms a sys-

tem of equations which can be solved graphically a la Fried-

lander [6] by extending the solution proposed in [13] via

incorporating hair dynamics in a straightforward manner.

This is illustrated in Figure 3.

4.2 Vertical plane

For the polarization that is perpendicular to the bowing

direction, each equivalent hair-string segment is treated as a

lumped junction between adjacent DW segments. A finite-

difference approximation is used to simulate the transversal

vertical admittance of the hair as seen from the string. At

each junction, the normal force FN exerted by the string on

the hair must equal the total force F y
s applied by the hair

on the string. In our model, we impose that

F y
s = Fb + F

y
h , (9)

where Fb is the vertical force applied by the player, and

F
y
h is the vertical force at the junction due to interaction

between incoming traveling waves and the junction ver-

tical admittance Y
y
h as seen from each of the two series-

connected string segments. Therefore, at each junction (see

Figure 4), the string segment vertical velocities v
y
L and v

y
R

must both equal the hair vertical velocity v
y
h, while the sum

of vertical forces F
y
L and F

y
R applied by the string segments

must equal the force F
y
h of the load:

v
y
L = v

y
R = v

y
h

F
y
L + F

y
R = F

y
h

(10)

We simulate Y
y
h as a two-pole digital resonator as resulting

from constructing an equivalent mass-loaded parallel spring-

dashpot structure and discretizing through the trapezoidal

approximation. Values for the mass, spring and dashpot can

be made dependent on the external vertical force Fb.

5. BRIDGE INPUT ADMITTANCE

In order to allow for both horizontal and vertical polariza-

tions of the transverse waves on the string, we simulate the

two-dimensional, driving-point bridge admittance matrix Y
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Figure 5: Synthetic admittance Ŷhh modeling example.

Magnitude (top) and phase (bottom). Dashed curves: ad-

mittance measurement; solid curves: model with M = 15.

via the modal framework, by means of an IIR digital filter in

parallel form. Starting from the structurally passive admit-

tance matrix formulation introduced in [17] (see Eq. (11)),

we developed a technique for fitting the parameters of a

passive IIR digital filter to vibration measurements obtained

experimentally.

A useful set of structurally passive two-dimensional driving-

point admittance matrices can be expressed in the z-domain

[17] as

Ŷ(z) =

[

Ŷhh(z) Ŷhv(z)

Ŷhv(z) Ŷvv(z)

]

=
M
∑

m=1

Hm(z)Rm, (11)

where each Rm is a 2× 2 positive semidefinite matrix, and

each m-th scalar modal response

Hm(z) =
1− z−2

(1− pmz−1)(1− p∗mz−1)

is a second-order resonator determined by a pair of complex

conjugate poles pm and p∗m. The numerator 1− z−2 is the

bilinear-transform image of s-plane zeros at DC and infinity,

respectively, arising under the “proportional damping” as-

sumption [17]. It can be checked that Hm(z) is positive real

for all |pm| < 1 (stable poles). We estimate pm in terms of

the natural frequency and the half-power bandwidth of the

m-th resonator [18].

Departing from admittance measurements in digital form

and the M -th order modal decomposition described in

Eq. (11), the problem is posed as a constrained minimiza-

tion over M mode frequencies, M bandwidths, and M pos-

itive semidefinite 2× 2 gain matrices. In a first stage, mode

frequencies and bandwidths are estimated in the frequency

domain via sequential quadratic programming. Then, mode

amplitudes are estimated via semidefinite programming

while enforcing passivity. We obtain accurate, low-order

digital admittance matrix models. The frequency response

of the horizontal entry Ŷhh of a cello bridge admittance ma-

trix model (M = 15) is displayed in Figure 5. Details about

this modeling procedure, including both the measurement

and the fitting, can be found in [19].
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Figure 7: Detail of the spatio-temporal distribution of fric-

tion force F x
s (top) and hair relative horizontal velocity vxh

(bottom), as seen from the nut side of the bow-string contact.

Note that time (bottom axis) is reversed (right to left).

6. PRELIMINARY TESTS

Our motivation is to construct a reliable platform that, by

providing means for simulating the qualitative nature of

bowed strings as observed in previous studies, can serve

as a basis for developing sound synthesis. Because we

face iterative tests involving calibration both of the physical

model and of the bowing synthesizer, an important consid-

eration for our approach is efficiency. We have decided

to implement our model entirely in plain C so that time

computation can be minimized, always aiming at real-time.

For the time being, we have discarded parallel computation

of any kind.

Many parameters are involved in the physical modeling

framework introduced here. It is not the aim of this paper to

provide a study on parameter dependence, but to introduce

our model and to report on its current state and qualitative

behavior. The preliminary tests we carried out with our

system are very promising, both in terms of stability and

qualitative nature, and also regarding efficiency. The design

parameter that presents a most dramatic effect on compu-

tation cost is the spatial discretization ∆x, which directly

translates into the number of nodes used to model bow-

string interaction. For a desired ∆x, stability imposes ∆t.

NB ∆x (mm) fs (kHz) Real Time

3 3.3 30.3 4.3%

6 1.6 60.7 9.2%

10 1.0 91.0 18.4%

20 0.5 182.1 49.6%

33 0.3 303.6 119%

60 0.16 546.5 334%

Table 1: Details on computational cost, tested on a 5-year

old laptop CPU (Intel P9400). Fully-featured cello sim-

mulation, bowing its C-string with a bow spanning 1 cm,

modeled via NB equivalent hair-string interaction nodes.

Even for moderately fine spatial discretizations, simulations

including all four strings and a high-fidelity input bridge

admittance can be computed in the vicinity of real-time.

Table 1 provides details on computational cost.

In Figure 6 (spanning the whole last page of the paper) we

plot various relevant measures obtained with a calibration

of our model when driving the open C string of a cello

with constant bow velocity vb = 0.15 m/s, constant relative

bow-bridge distance β = 0.07, and a uniformly distributed

bow force Fb = 300 N/m. A total of 60 equivalent hair-

string segments were used to simulate 1 cm of bow width

in contact with the string. The configuration was chosen so

that it was straightforward to observe temperature diffusion,

the histheretic behaviour of friction, partial backward slips,

partial forward slips (observable in the top left corner of

friction curve corresponding to the nut half of the bow-

string contact, and also in the temperature profile), and hair

dynamics in both planes. Regarding temperature ranges,

note that because the friction dependence with temperature

is an arbitrary function (see Section 3), different parameter

choices can be made valid, allowing for certain flexibility.

For clarity, in Figure 7 we additionally display the spatio-

temporal distribution of friction force F x
s (top) and hair

relative horizontal velocity vxh (bottom) as seen from the

nut side of the bow-string contact, positively showing the

differences between the osciallations suffered by the hair

during sticking and slipping. Finally, the effect of choice of

damping for the equivalent representation of the hairs in the

vertical plane can be observed in Figure 8, where vertical

waves arriving as reflected from the bridge get progressively

attenuated as they go through the bow-string contact.

7. OUTLOOK

We have reported on the current state of our refinement over

current bowed-string simulation approaches. Our model is

able to match the qualitative nature of previously observed

behaviors, but incorporating innovative aspects such as a

finite-width dynamic friction model, or a modified Friedlan-

der construction allowing for an efficient solution of non-

linear string-hair dynamics. The model offers a promising

compromise between detail and computational cost. Clear

next steps are adding torsional string vibration, and further

investigating and implementing the modulation of hair phys-

ical constants [20] as a function of varying bow force or

bowing position. Moreover, we currently prepare extended
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Figure 8: Illustration of the spatio-temporal distribution of

the effective bow (vertical) force F y
s for a simulation with

increased hair damping.

tests with synthetic bowing data in order to produce realistic

musical sounds which could serve as a basis for evaluat-

ing which model features or parameter configurations are

perceptually more relevant.
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Figure 6: Simulation test, relevant measures. Open C string of a cello driven with vb = 0.15 m/s, β = 0.07, and Fb = 300
N/m. Top to bottom, left to right: String horizontal velocity, friction force, hair relative velocity, effective bow force, friction

map (slip: white; stick: black), temperature, sliding velocity vs friction (nut-side half of the bow-string contact; darker

greys: towards bow midpoint), sliding velocity vs friction (nut-side half of the bow-string contact; darker greys: towards bow

midpoint).
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