
Modular Physical Modeling Synthesis Environments on GPU

Stefan Bilbao and Alberto Torin
Acoustics and Audio Group

University of Edinburgh
sbilbao@staffmail.ed.ac.uk

s1164558@sms.ed.ac.uk

Paul Graham and James Perry
Edinburgh Parallel Computing Centre

University of Edinburgh
paul@epcc.ed.ac.uk

j.perry@epcc.ed.ac.uk

Gordon Delap
Department of Music

NUI Maynooth
g.delap@googlemail.com

ABSTRACT

Physical modeling synthesis is a powerful means of ac-
cess to a wide variety of synthetic sounds of an acoustic
character—one longstanding design principle underlying
such methods has been, and continues to be modularity,
or the decomposition of a complex instrument into simpler
building blocks. In this paper, various modular physical
modeling design environments, based on the use of time
stepping methods such as finite difference time domain
methods are described, with an emphasis on the underly-
ing computational behaviour of such methods, both in the
run-time loop and in precomputation. As such methods are
computationally intensive, additional emphasis is placed
on issues surrounding parallelisation, and implementation
in highly parallel hardware such as graphics processing
units. This paper is paired with a recently completed multi-
channel piece, and the composer’s perspective on working
with such environments is also addressed.

1. INTRODUCTION

Physical modeling synthesis is a longstanding attempt to
overcome the limitations of abstract and sampling-based
synthesis methods; the aim is to allow the composer flexi-
ble access to a wide variety of sound material of an acous-
tic character. To this end, modularity is a useful design
principle.

Modular physical modeling construction environments,
whereby the user takes on the role not just of composer,
but also instrument builder are by no means new. The first
complete system, CORDIS, making use of lumped net-
works of masses and springs [1], has been under devel-
opment since the late 1970s [2]. Another approach, based
on the use of modal expansions for distributed objects such
as strings, membranes, and plates, accompanied by a con-
nection framework [3] is the basis for the MOSAIC and
Modalys systems [4, 5] developed at IRCAM. Finally, dig-
ital waveguides [6], based on the use of traveling wave
representations, and implemented efficiently as delay lines
also allow for such modular constructions [7], particularly

Copyright: c©2014 Stefan Bilbao and Alberto Torin et al. This

is an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

when complemented by the machinery of wave digital fil-
ters [8].

The methods mentioned above are all distinct (with some
interesting points of contact) and all have strengths and
weaknesses. The lumped network paradigm allows for
very low level control (to the extent that the properties
of individual masses are accessible), but the construction
of distributed sound-producing objects, while possible, is
more cumbersome. Modal methods can be extremely effi-
cient for linear objects with a relatively low number of au-
dible modal frequencies (such as, for instance, a marimba
bar), but nonlinear behaviour becomes more difficult to
model (though again, possible), and precomputation costs
and storage for modal representations for nontrivial ob-
jects can be prohibitive. The waveguide framework yields
extremely efficient implementations for certain elements
such as an ideal string, or a uniform cylindrical or conical
tube, but loses efficiency quickly when extended to more
complex settings in higher dimensions or when nonlinear-
ities are present.

Direct time-stepping methods, operating over grids, such
as finite difference time domain methods [9], or finite vol-
ume methods [10], can be viewed as compromise allow-
ing for generality and flexibility, especially in a modular
environment, while sometimes sacrificing efficiency and,
of course, introducing new problems all their own, such
as the maintenance of numerical stability and audible ar-
tifacts due, e.g., to numerical dispersion, requiring some
painstaking work at the design stage. For a fuller discus-
sion of the distinctions between such time stepping meth-
ods and the other synthesis techniques listed above, from
the perspectives of both computational cost and perceptual
artifacts, see [11].

This paper describes ongoing work at the University of
Edinburgh in large-scale, and ultimately 3D physical mod-
eling synthesis under the umbrella of the NESS Project,
particularly using direct PDE solvers, and parallelized in
multicore and also on GPU. One aspect of such work is
the construction of modular physical modeling synthesis
systems, accompanied by work directly with composers.
This paper is structured as follows: In Section2, various
components of a percussion-based modular synthesis sys-
tem are described, including the surrounding 3D space as
a single “component” of its own. Section3 describes, in a
general fashion, the application of grids and time stepping
methods to such systems, resulting in recursions operating
over a vectorized state, with a high-level description of the

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1396 -

mailto:sbilbao@staffmail.ed.ac.uk
mailto:s1164558@sms.ed.ac.uk
mailto:paul@epcc.ed.ac.uk
mailto:j.perry@epcc.ed.ac.uk
mailto:g.delap@googlemail.com
http://creativecommons.org/licenses/by/3.0/

Figure 1. Left: vibrating 1D bar system. Center: Struck curved plate. Right: 3D acoustic field generated by striking a
drum.

functioning of such algorithms in the run-time loop. Sec-
tion 4 is a presentation of three particular large-scale mod-
ular synthesis environments; parallelization and the result-
ing port to multicore and GPU are described in Section5,
as well as a rudimentary interface in Section6. Finally, the
musician’s point of view is considered in Section7; after
having performed extensive investigation of such environ-
ments, one of the authors (Delap) successfully created an
original multichannel computer music piece, which forms
the companion to this article.

2. COMPONENTS

In the framework described below, the basic sound-producing
objects, or modules, are taken to be distributed—that is,
occupying space in 1, 2, or 3 dimensions. Each such mod-
ule is thus characterized by a relatively small number of
material and geometric parameters. In this sense, it is simi-
lar to modal environments, but distinct from methods based
on lumped mass/spring networks.

2.1 1D Objects: Strings and Bars

The most basic distributed objects of interest in a physi-
cal modeling synthesis framework are 1D objects such as
strings and bars (wind instruments, based on acoustic tube
models, are also well-modelled in 1D, and under devel-
opment in the NESS project, but are not covered here).
Such objects are assumed thin, so that the displacement
may be written as a function of timet and a single spatial
coordinatex. Strings are assumed to be without inherent
stiffness, and support vibration due to tensioning; bars are
assumed stiff, and untensioned; a stiff string incorporates
both such effects. See Figure1, at left.

There are many models of the vibration of such 1D sys-
tems [12], of differing levels of complexity, including ef-
fects of longitudinal vibration, vibration in different po-
larizations, non-negligible thickness, and also different de-
grees of nonlinearity, including averaged effects such as
tension modulation, leading to pitch glides [13], and, in
the most involved case, full nonlinear coupling among the
transverse polarizations and longitudinal motion, leading
to effects such as phantom partial generation in piano strings
under high striking amplitudes [14].

2.2 2D Objects: Membranes, Plates and Shells

Thin 2D structures such as membranes and plates are anal-
ogous to the string and bar, respectively, and play a key role

in most percussion instruments. Nonlinearity, if modelled,
plays a much larger role than in the case of strings and bars,
leading to dramatic effects such as crashes in gongs [15].
Curved structures (shells) can also be employed as models
of instruments such as cymbals. See Figure1, at center.

2.3 Embedding in 3D

For full 3D rendering, simulation of the acoustic field is
necessary, and is the most computationally heavy (but also
most parallelizable) operation. One major interest here is
in embedding other components in 3D space, such as iso-
lated plates, or cavity/membrane combinations as in the
case of timpani [16] and snare drums [17], allowing for
natural modeling of acoustic radiation, and also for spa-
tialized audio output, drawn directly from the field. If an
embedded instrument is to be modelled in isolation, a rel-
atively small enclosing space can be employed, with ab-
sorbing boundary conditions used in order to reduce or
eliminate spurious reflections. If an entire room surround-
ing the instrument is to be modelled, then realistic room
impedance boundary conditions can be employed. See Fig-
ure1, at right.

2.4 Connections

The view taken here of a connection is perhaps more gen-
eral than in other physical modeling environments, in that
it refers to any interchange of energy between individual
components (including the acoustic field, in a 3D setting)
where conservation of momentum is enforced, and where
energy is conserved (or more generally dissipated). In par-
ticular, at the level of the resulting implementation, there
is not a distinction between lumped connections, and those
with a distributed character. What does have an impact on
the implementation is nature of the connection is linear or
nonlinear.

Linear connections include: a lumped linear mass-spring
connection between two components, at specified locations,
the pointwise connection of two distributed components
(such as a string and plate, in the case of a soundboard),
and also the interaction of a distributed object such as a
plate with the acoustic field. Nonlinear connections in-
clude: the interaction of a lumped striking or bowing mech-
anism with a distributed object, ans also fully distributed
interactions such as the collision of a membrane with a
wire (in the case of a snare drum), or of a string with a
fretboard or barrier. Linear and nonlinear connections are

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1397 -

handled differently in the resulting implementation—see
Section3.

3. TIME DISCRETIZATION, GRIDS,
RECURSIONS AND THE RUN-TIME LOOP

In sound synthesis applications, it is convenient to dis-
cretize the entire system at a uniform sample ratefs. When
time stepping methods are employed, the choice of sample
rate implies, for the simplest (explicitly computable) al-
gorithms, a lower bound on the spatial grid size used to
represent a particular component, and, in order to mini-
mize perceptual artifacts resulting from numerical disper-
sion [9], it is best to choose the grid so as to satisfy this
bound as close to equality as possible. In general, this im-
plies that grids for different components will be distinct.
See Figure2 for a depiction of grids used in 1D, 2D and
3D—all Cartesian, here, as such regularity leads to greater
ease in terms of parallelisation. It is important to note that
the grid representation here is not to be interpreted as a
network of lumped masses, as in the case of environments
such as CORDIS—the variables calculated over such grids
sometimes correspond to displacements of the medium,
and sometimes to other variables (such as potential func-
tions, bending moments, etc.).

Figure 2. Regular grids used in the solution of systems in
1D, 2D and 3D.

Ultimately, regardless of the form of the modular con-
struction, or the choice of grid, the state of the entire net-
work may consolidated into a vectoru, and must be ad-
vanced in time at the audio sample rate. See, e.g., [18] for
a more elaborate discussion on this topic. The resulting al-
gorithm may be written in a generalized state-space form
outlined in the pseudocode given below:

Precomputation:

• From instrument definition:
Al,Bl,Cl,Bnl,Cnl,Ml,Mnl,Q

• From score:
Me, f

n
e

Initialization: ulast

Run-time loop:

for n=1:final

1. A = A(ulast),B = B(ulast)

2. Au = Bulast +Mef
n
e

3. Alfl = Blu+Clulast

4. φ(fnl,Bnlu+Cnlulast) = 0

5. u := u+Mlfl +Mnlfnl

6. yn = Qu

7. ulast = u

end
Such codes have been developed in the style of MusicN ,

requiring, as input, an instrument file, describing the prop-
erties of the individual components, connections, as well
as multichannel readout locations, and a score file contain-
ing information regarding the excitation gesture (in a per-
cussion framework, this is the timing and amplitudes of
individual strikes).

The precomputation stage consists of two steps: the gen-
eration of matrices from the instrument definition of the
modular environment:Al, Bl, Cl andMl, correspond-
ing to linear connections,Bnl,Cnl andMl, corresponding
to nonlinear connections andQ, corresponding to readout
locations from the modular system. Because of the local
nature of finite difference time domain methods, all such
matrices are easily constructed, and extremely sparse, and
thus storage requirements are low. The second step con-
sists in generating, from score information, an input vec-
tor sequence of forces,fe, and a matrixMe (again sparse)
from excitation locations. The stateulast, is the collection
of displacement values over the grids for all components
in the system, at two initial time steps, arranged as a single
vector; in general, this vector is initialized to zero.

In the run-time loop, step 1., consisting of the construc-
tion of sparse matricesA andB, is necessary only when
at least one component in the environment is nonlinear;
otherwise, they may be constructed at the precomputation
stage—in an explicit update (which is ideal),A is the iden-
tity matrix. Step 2. is a first pass through the system in
the absence of connections, and introducing external con-
trol signalfe. Notice that in general, this requires a linear
system solution involvingA. Step 3. is the calculation of
linear connection forcesfl, generally requiring a linear sys-
tem solution. Step 4. is the calculation of nonlinear con-
nection forcesfnl, framed in terms of a nonlinear function
φ (describing, for example, characteristics of collisions of
bowing actions). This step generally requires the use of an
iterative method such as Newton-Raphson. Step 5. is the
reinsertion of the calculated connection forces into the so-
lution. Step 6. is the calculation of sound output (generally
multichannel). Step 7. is the shift of the state in prepara-
tion for the next step in the recursion.

The only operations which occur in the run-time loop are
sparse matrix-vector multiplication, sparse linear system
solution, and iterative methods such as Newton-Raphson.
In terms of the raw operation count, steps 1.,3.,5.,6., and
7. are generally not computationally costly. Step 2., if the
matrix A is not the identity (as is the case when nonlin-
ear components are present) can be computationally very
heavy, as a large linear system solution is necessary. For

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1398 -

Figure 3. Modular environments: Left: a connected network of plates, as described in Section4.1. Center: a plate/string
network,as described in Section4.2. Right: a set of nonlinear plates embedded in a 3D air box, as described in Section4.3.

large 3D systems, even ifA is the identity, this step can
also be extremely costly. Step 4. can also be quite heavy,
particularly when regions of distributed nonlinear contact
are present (as, for example, in the case of a snare drum
model). The implications of these operations for execu-
tion time in a parallel implementation will be considered
separately in Section5.

4. ENVIRONMENTS

4.1 A Connected Network of Plates

A rudimentary environment, based on a previous system
described in [19], consists of a set of plates, over which the
user has individual control over the material type, thick-
ness, dimensions, two-parameter frequency-dependent loss,
and boundary condition type (pivoting, clamped, or free);
the plates are modelled entirely in 2D, without embedding
in a 3D space. See Figure3, at left. Connections are spec-
ified between specified points; such a connection is mod-
elled as a combination of a linear spring, a cubic nonlin-
ear spring, and a linear damper. Input is of three types:
striking, consisting of the insertion of pulses of specified
duration and amplitude at given locations, bowing, where
the user has control over bowing location, force and veloc-
ity, and through sending in an audio file, in which case the
environment is to be viewed as an effect algorithm. Mul-
tichannel output is drawn directly from plate displacement
or velocity at specified locations, in a manner somewhat
analogous to a contact microphone. Such an environment
formed the basis for the investigations of one of the authors
(Delap), and the resulting companion piece to this article.

4.2 Plate + Constrained Strings

A different environment, currently under testing, allows for
the connection of multiple string or bar modules to a single
plate, which could function as a soundboard (if the plate is
chosen large and thin enough); such a system is capable
of generating sympathetic resonance between the various
strings—see Figure3, at center. In addition, each string is
constrained against a barrier (not indicated in the figure),
allowing for fretting action and nonlinear effects such as
those heard in instruments such as the sitar.

4.3 Embedded Nonlinear Plates in 3D

Another environment based on plate components has been
recently developed [20], and is similar in some respects to
that presented in Section4.1, in that the user has control
over the different parameters of the system.

In this case, however, the underlying physical model for
each plate includes nonlinear effects described by the von
Kármán system [21]. At high striking amplitudes, this nu-
merical model produces pitch glides and crashes typical of
gongs and cymbals [22], which are perceptually important
features that increase the realism of the synthetic sound.

Another difference with the network presented above is
that the plates are embedded in 3D, and their position can
be specified anywhere within a finite enclosure, as dis-
cussed in Section2.3. See Figure3, at right. The mo-
tion of each plate is coupled with the surrounding air, such
that the vibrations produced propagate throughout the fi-
nite enclosure—indeed, sympathetic resonance effects be-
tween the plate components are a possibility. Output sounds
can be picked up simultaneously at multiple points within
the box, and a moving output location is also a feasible op-
tion. It is also possible to incorporate a cavity terminated
on the plate so as to emulate drums.

The excitation mechanism for this environment is still at
a preliminary stage, and only short strikes can be fed in
at the moment. However, as in the previous case, bowing
gestures and input audio files could also be easily imple-
mented.

5. ACCELERATION IN MULTICORE AND ON
GPU

Protyping work was carried out in the Matlab language.
The hardware platform to which prototype codes were ul-
timately ported consists of:

• Dual 6 core Xeon E5-2620 CPUs running at 2GHz

• 4 NVIDIA Tesla K20c GPUs

This machine provides a number of opportunities for ac-
celerating the codes by exploiting parallelism at various
levels. The GPUs are very well suited to problems where
the same calculation is performed across a large number of

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1399 -

Instrument File

zcversion 0
set 44100Hz sampling rate
samplerate 44100

define a steel plate
<name> <material> <thickness> <tension> <X> <Y> <T60@0Hz> <T60@1kHz> <bc type>
plate plat1 steel 0.002 0.0 0.3 0.2 10.0 6.0 4

define a connection from one point on the plate to another
<X1 Y1> <X2 Y2> <linear stiffness> <nonlinear stiffness> <T60>
connection plat1 plat1 0.8 0.4 0.6 0.7 10000.0 10000000.0 1000000.0

define two outputs from the plate <X Y> <pan>
output plat1 0.9 0.6 -1.0
output plat1 0.3 0.7 1.0

Score File

highpass off # no high-pass filter
duration 1.0 # one second simulation

define a strike
<strt T> <component> <X Y> <Duration> <Amplitude>
strike 0.0 plat1 0.4 0.7 0.002 400000.0

define a bowing action
<strt T> <comp> <X Y> <dur> <F amp> <V amp> <friction> <ramp T>
bow 0.3 plat1 0.3 0.9 4.0 2.3 2.8 1.1 0.02

define an audio input
<file> <strt T> <component> <X Y> <gain>
audio drumming.wav 0.1 plat1 0.2 0.4 1.0

Figure 4. Instrument and score files for the modular plate environment described in Section4.1.

data items and are therefore a good fit for running 3D com-
ponents, such as the surrounding box described in Section
4.3. They are also effective for speeding up calculation for
some of the 2D components (the ones that are linear, as in
the environment described in Section4.1, and reasonably
large). 1D components tend not to provide enough paral-
lelism for GPU acceleration to be worthwhile. The GPUs
are programmed by using NVIDIA’s CUDA toolkit [23] to
implement key parts of the code.

There are also two levels of parallelism available on the
CPUs. Most obviously, the machine has 12 CPU cores in
total, allowing up to 12 threads of execution to run con-
currently (though memory bandwidth may become a bot-
tleneck if all of these threads are making heavy use of the
shared memory). This can be exploited by using a thread-
ing library such as OpenMP [24] or Pthreads [25]. Finally,
each CPU core includes a vector unit implementing Intel’s
SSE (Streaming SIMD Extensions) and AVX (Advanced
Vector Extensions) technologies [26]. These allow a sin-
gle machine instruction to perform multiple calculations
simultaneously.

The linear plate network code described in Section4.1
was accelerated by porting it to the GPUs. For a network
consisting of 4 medium sized (100x100 grid points) plates,
this gives a 7x speed up over a single-threaded CPU im-
plementation; for 4 large sized (200x200 points) plates, the
GPU port is 27x faster.

The plate plus constrained strings environment described
in Section4.2 proved unsuitable for GPU acceleration as
the bottleneck is the handling of collisions between the
strings and the constraining surface, and the string data is
not large enough to make a GPU port worthwhile, even in

the most extreme cases (i.e. a large number of low tension
strings and a large plate). Instead, an optimised multicore
port was created, running the collision code on multiple
threads to take advantage of the multiple CPU cores. This
gave a speed up of around 60x over the original Matlab
version of the code.

The embedded nonlinear plates code described in Sec-
tion 4.3 was more complex and a hybrid approach was
used. The 3D surrounding air box was accelerated with
the GPUs, but the 2D plates were unsuitable for GPU ac-
celeration - the linear system solution operation required
at each time step uses a preconditioner algorithm that is in-
herently sequential, and attempts to replace this with a par-
allel preconditioner were unsuccessful. However, it was
possible to optimise the preconditioner on the CPU using
vector instructions, and also to take advantage of multiple
CPU cores by updating each plate in a separate thread. Fi-
nally, the plate updates on the CPU were overlapped with
the airbox update on the GPU to reduce the runtime still
further. The optimised hybrid code is around 60-80x faster
than the original Matlab version of the code.

6. USER INTERFACE

As a preliminary step towards usability, a web-based user
interface has been implemented. The interface allows for
two main functions: submission of compositions to be run
on the dedicated GPU-based hardware, and the generation
of percussive gestures to be used in a composition score.

As of March 2014, there are three different modular codes
available via the user interface for the composers, repre-
senting the environments as discussed in Section4.1, 4.2

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1400 -

and4.3. The simulations (hybridized over the GPU and
host in multicore, as discussed in the previous section) that
can be run with these codes are controlled by two input
files: the instrument definition file, and the score file. See
Figure4 for a simple example of an instrument/score file
pair. The instrument file describes the individual properties
of a series of plates, as well as connections among them,
their type, and output locations. The score file describes ei-
ther a series of gestures (such as strikes, bowing actions),
or an input audio file, to be used as excitations for the in-
struments.

Given that a score could ultimately be quite lengthy, in
order to quickly create a list of gestures a simple gesture
generator web interface was developed. This allows the
composer to quickly generate a series of strikes based on
a user-defined profile, controlled by a series of breakpoint
functions (see Figure5). These can then be used in a rapid-
calculation demo mode on a basic steel plate, or exported
directly to form part of a score. gestural properties which
can be specified are strike density (in strikes per second),
amplitude, duration, andx andy location of the strikes on
the plate as a function of time. A user-controlled random-
izing function is also incorporated.

Figure 5. The user interface gesture generator for the mod-
ular plate network.

Further details on the user interface are available at:
http://www.ness-music.eu/user-documentation

.

7. A COMPOSER’S PERSPECTIVE

The multichannel fixed-media composition,Ashes to Ashes,
was generated mainly through compositional exploration
of the modular environments described in Section4.1and
Section4.3. One other modular physical modeling syn-
thesis instrument, not described here, but currently in an
intermediate stage of porting from Matlab was also em-
ployed: a multi-valve brass instrument, also availed of and
fused into the fabric of the work.

The sound artist adopts multiple roles in terms of dealing
with materials and gestures: instrument builder, performer,
and composer. A high level of subtlety can be required in

voicing instruments subsequent to design. The connected
plate network is particularly suited to creating percussion
instrument archetypes. However, through extreme instru-
ment configurations, it is possible to generate sonic outputs
which might be unrealizable under natural conditions as a
consequence of an infeasible design, yet which maintain
the authenticity of the percussion-type instruments. Atyp-
ical outcomes can also be realized by driving plate models
in an “effect” mode with audio files. Investigation of such
a spectrum of instruments with familiar instrument types
positioned at one end, and novel sound material located at
the other presented one avenue of creative inquiry.

The user interface allowed for the generation of gestures
of considerable complexity. Such gestures could imply a
high degree of human agency (e.g. drumrolls) or could im-
ply gestures of non-human origins (machinery, rain). Inter-
play between instrument and gesture types led to the cre-
ation of three soundworlds within the composition:

• A soundworld whereby human agency is strongly
implied through excitation of more-or-less familiar
instrument types (gongs, cymbals, bass drums, bells)
and integrating recorded speech elements which were
driven through large metal plates. Wind instruments,
generated through the wind instrument models, and
passed through very large plates were used in this
section.

• A soundworld where instrument types were less fa-
miliar and where human agency was masked or sub-
verted. A large network of plates was excited in a
mechanistic fashion, and was combined with enor-
mous wind instruments which had been driven through
metal plates. Breath sounds associated with the wind
instrument models also featured heavily here.

• A soundworld dealing with unfamiliar objects, and
one in which cues indicative of human performance
are largely absent. In this case, sound objects were
provided with dimensions which are highly unusual
in the design of typical instruments, and were ex-
cited though gestures abstracted from standard modes
of human performance.

A materials component is present which allowed for spec-
ification of parameters pertaining to the physical properties
of specific metals—in this case, uranium. The ability to al-
lude to the properties of a particular metal was important
on a conceptual level.

8. CONCLUDING REMARKS

The NESS Project is concerned with raw sound genera-
tion from physical models, and in particular the algorith-
mic and computational aspects of synthesis. The musi-
cal goal is, simply speaking, to explore the possibilities
for synthetic sound, while making as few simplifying as-
sumptions as possible about the systems under considera-
tion. Even for relatively large scale systems, implementa-
tion in parallel hardware can (but does not always!) lead to
great acceleration—synthesis is not real time, but not as far

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1401 -

Figure 6. Composer at work in the makeshift 16-channel
space at the University of Edinburgh.

off as one might think; though execution time depends on
the complexity of the instrument, sound generation times
for can often be faster than real time, even for relatively
complex forms. The constraints of parallel implementa-
tion have informed many aspects of algorithm design here,
and in particular the use of regular grids whenever pos-
sible. Some necessary computational operations, such as
large linear system solutions and root-finding, can be diffi-
cult to parallelize using standard solution methods, and the
search for parallelizable alternatives forms a major part of
ongoing algorithm design work.

The larger question, and not one addressed under the cur-
rent project, is that of user instrument design and con-
trol. At the level of instrument design, individual mod-
ules are characterised by a small number of parameters.
When there are many such modules (as in the environ-
ment described in Section4.1), the parameter space be-
comes large, and some means of exploring such a space
becomes necessary. At the same time, such exploration
forms part of the learning experience of the musician, who
quickly deduces general constraints on the design space to
the ”musically useful,” much in the same way as an instru-
ment builder. While in the current non-real-time setting, a
playable control interface is clearly not a concern, interest-
ing percussive gestures can require a large number of indi-
vidual events, and the simple strategy described in Section
6 allows for low-dimensional control over such gestures.

The ultimate answers to questions regarding instrument
design, control and musical use, however, can only be ar-
rived at through close work with musicians—this collabo-
ration has been the first such exploration, and is one of a
further five to be carried out over the next three years.

Acknowledgments

This work was supported by the European Research Coun-
cil, under grant number StG-2011-279068-NESS.

9. REFERENCES

[1] C. Cadoz, “Synthèse sonore par simulation de
mécanismes vibratoires,” 1979, thèse de Docteur
Ingénieur, I.N.P.G. Grenoble, France.

[2] C. Cadoz, A. Luciani, and J.-L. Florens, “Cordis-
anima: A modeling and simulation system for
sound and image synthesis,”Computer Music Journal,
vol. 17, no. 1, pp. 19–29, 1993.

[3] J.-M. Adrien and X. Rodet, “Physical models of instru-
ments, a modular approach, application to strings,” in
Proceedings of the International Computer Music Con-
ference, Vancouver, Canada, 1985, pp. 85–89.

[4] J.-M. Adrien, “The missing link: Modal synthesis,” in
Representations of Musical Signals, G. DePoli, A. Pi-
cialli, and C. Roads, Eds. Cambridge, Massachusetts:
MIT Press, 1991, pp. 269–297.

[5] D. Morrison and J.-M. Adrien, “Mosaic: A frame-
work for modal synthesis,”Computer Music Journal,
vol. 17, no. 1, pp. 45–56, 1993.

[6] J. O. Smith III, “Physical modelling using digital
waveguides,”Computer Music Journal, vol. 16, no. 4,
pp. 74–91, 1992.

[7] M. Karjalainen, “Block-compiler: Efficient simulation
of acoustic and audio systems,” presented at the 114th
Audio Engineering Society Convention, Amsterdam,
the Netherlands, May, 2003. Preprint 5756.

[8] A. Fettweis, “Wave digital filters: Theory and prac-
tice,” Proceedings of the IEEE, vol. 74, no. 2, pp. 270–
327, 1986.

[9] J. Strikwerda, Finite Difference Schemes and Par-
tial Differential Equations. Pacific Grove, Califor-
nia: Wadsworth and Brooks/Cole Advanced Books and
Software, 1989.

[10] R. Leveque,Finite Volume Methods for Hyperbolic
Problems. Cambridge, UK: Campbridge University
Press, 2002.

[11] S. Bilbao,Numerical Sound Synthesis: Finite Differ-
ence Schemes and Simulation in Musical Acoustics.
Chichester, UK: John Wiley and Sons, 2009.

[12] C. Vallette, “The mechanics of vibrating strings,” in
Mechanics of Musical Instruments, A. Hirschberg,
J. Kergomard, and G. Weinreich, Eds. New York,
New York: Springer, 1995, pp. 116–183.

[13] V. Välimäki, T. Tolonen, and M. Karjalainen,
“Plucked-string synthesis algorithms with tension
modulation nonlinearity,” inProceedings of the IEEE
International Conference on Acoustics, Speech, and
Signal Processing, vol. 2, Phoenix, Arizona, March
1999, pp. 977–980.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1402 -

[14] B. Bank and L. Sujbert, “Generation of longitudinal
vibrations in piano strings: From physics to sound syn-
thesis,”Journal of the Acoustical Society of America,
vol. 117, no. 4, pp. 539–557, 2005.

[15] S. Bilbao, “Robust physical modeling sound synthesis
for nonlinear systems,”IEEE Signal Processing Mag-
azine, vol. 24, no. 2, pp. 32–41, 2007.

[16] L. Rhaouti, A. Chaigne, and P. Joly, “Time-domain
modeling and numerical simulation of a kettledrum,”
Journal of the Acoustical Society of America, vol. 105,
no. 6, pp. 3545–3562, 1999.

[17] S. Bilbao, “Time domain simulation of the snare
drum,” Journal of the Acoustical Society of America,
vol. 131, no. 1, pp. 913–925, 2012.

[18] S. Bilbao, B. Hamilton, A. Torin, C. Webb, P. Gra-
ham, A. Gray, J. Perry, and K. Kavoussanakis, “Large
scale physical modeling synthesis,” inProceedings of
the Sound and Music Computing Conference, Stock-
holm, Sweden, 2013.

[19] S. Bilbao, “A modular physical modeling synthesis en-
vironment,” inProceedings of the International Digi-
tal Audio Effects Conference, Como, Italy, September
2009.

[20] A. Torin and S. Bilbao, “A 3D Multi-Plate environment
for sound synthesis,” inProc. of the 16th Int. Confer-
ence on Digital Audio Effects (DAFx-13), Maynooth,
Ireland, September 2-6, 2013.

[21] A. H. Nayfeh and D. T. Mook,Nonlinear oscillations.
New York: John Wiley and Sons, 1979.

[22] A. Chaigne, C. Touzé, and O. Thomas, “Nonlinear vi-
brations and chaos in gongs and cymbals,”Acoustical
science and technology, vol. 26, no. 5, pp. 403–409,
2005.

[23] “Cuda parallel computing platform,”
http://www.nvidia.co.uk/object/cudahomenew.html,
accessed: 2014-03-28.

[24] L. Dagum and R. Menon, “Openmp: an industry-
standard api for shared-memory programming,”IEEE
Computational Science and Engineering, vol. 5, no. 1,
pp. 46–55, 1998.

[25] F. Müller, “A library implementation of posix threads
under unix,”InUSENIX, p. 2941, January 1993.

[26] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo,
“Intel AVX: New frontiers in performance improve-
ments and energy efficiency,” Intel white paper, 2008.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1403 -

http://www.nvidia.co.uk/object/cuda_home_new.html

