
New Tools for Aspect-Oriented Programming in Music and Media
Programming Environments

John MacCallum, Adrian Freed, David Wessel

Center for New Music and Audio Technologies

Department of Music

University of California, Berkeley

{john,adrian,wessel}@cnmat.berkeley.edu

ABSTRACT

Media/arts programming is often experimental and exploratory

in nature and requires a flexible development environment

to enable continually changing requirements and to facili-

tate iterative design in which the development of software

impacts the design of a work of art which in turn pro-

duces new requirements for the software. We discuss agile

development as it relates to media/arts programming and

present aspect-oriented programming and its implementa-

tion in Max/MSP using Open Sound Control and the odot

library as tool for mobilizing the benefits of agile develop-

ment.

1. INTRODUCTION

Media/arts programming is often speculative in nature and

its practice is most closely related to that of agile devel-

opment [1] in the software engineering community. The

following principles constitute (with some slight modifica-

tions for media/arts development) agile programming [2,

3]:

1. The person for whom the development is being done

(often oneself) should be satisfied through early and

continuous delivery of valuable software.

2. Welcome changing requirements, even late in de-

velopment. Agile processes embrace change as the

artist adapts his/her vision of the project based on

iterations of the software.

3. Deliver working software frequently.

4. Artists and developers must work together often through-

out the project.

5. Working systems are the primary measure of progress.

6. Agile processes promote sustainable development.

The artists and developers should be able to main-

tain a constant pace indefinitely.

7. Continuous attention to technical excellence and good

design enhances agility.

8. Simplicity—the art of maximizing the amount of work

done—is essential.

Copyright: c©2014 John MacCallum et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Of these principles, 2, 3, 6, and 7 are perhaps the most im-

portant for our purposes. Since the creation of a work of

art is a speculative process, a clear and well-defined spec-

ification for a piece of software is rarely possible. Itera-

tive development where the software is tested and evalu-

ated in the context of the piece being created is essential

to allow the software and the concept of the work of art to

co-evolve. To promote this type of exchange, the develop-

ment environment must be one that is flexible, not brittle,

and one that welcomes potentially drastic change as the

result of incremental use and evaluation. Aspect-oriented

programming can limber up the development environment

when used sparingly and judiciously.

1.1 Aspect-Oriented Programming

Before providing a description of aspect-oriented program-

ming, it is useful to define some terms that are used through-

out the literature [4].

1.1.1 Terminology

The following terms are from the AOP literature

Cross-cutting concerns Aspects of a program that cut across

or are interwoven among many different parts of a

program.

Advice Additional behavior applied to data in the context

of an aspect.

Join point A point in the control flow of a program (in

dataflow languages like Max/MSP, PD, or Ptolemy

II [5] 1 these points are inlets and outlets of data flow

actors).

Pointcut A set of join points that may have advice associ-

ated with them.

1.1.2 Description

“Aspect-oriented programming (AOP) is a programming

methodology [which separates out] cross-cutting concerns

[. . .] from the main code of the actions to which the con-

cerns apply.”[6] Some examples of crosscutting concerns

that are useful in the context of real-time media/arts pro-

gramming are:

- Logging

- Visualization

1 http://ptolemy.eecs.berkeley.edu

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1587 -

http://creativecommons.org/licenses/by/3.0/
http://ptolemy.eecs.berkeley.edu

- Structural analysis

- Commentary

- Scaffolding

- Stream capture

- Performance profiling

- Debugging, printing and tracing

- Input/Output validation and assertion

- Dynamic code injection without modifying existing

(possibly running) code

Most modules in a complex program will need some of

the features itemized above at some point in the develop-

ment process. AOP enables those elements of the program

to be injected when necessary and easily removed when

they are no longer needed without modifying the code to

which they are applied. AOP frees programmers from the

need to foresee functionality and, often obviates the need

for programmers to revisit code to extend or modify its be-

havior. By providing each Max abstraction with the proper

hooks, we can quickly and unobtrusively add additional

behavior (“advice”) at various points in the program (“join

points”) without modifying existing code. Further, AOP

obviates the need to remember a number of ad hoc systems

for mundane functionality such as printing to the Max win-

dow.

2. SIMPLE EXAMPLE

Body

(a) Max abstraction

Body Advice

(b) Max abstraction with hooks

Figure 1: On the left, we see the typical dataflow through

an abstraction in Max. On the right, the use of o.in and

o.out to forward incoming and outgoing data to aspects.

In figure 1a, we see the skeleton of a module in Max,

while in figure 1b o.in and o.out provide join points where

advice can be applied. Data enters a module and is for-

warded by o.in to o.aspect.receive where advice is applied.

After processing, it is sent back to where it came from, in

this case o.in, by o.aspect.receive. o.in then forwards the

(possibly modified) data to the body of the Max abstrac-

tion. o.out behaves identically to o.in with the exception of

its contextual information.

3. APPLICATIONS

As programs grow in complexity, the need to understand

what is going on inside of submodules nested deep in the

patcher hierarchy can present serious difficulties. For ex-

ample, we may suspect that something is going wrong in

an abstraction and wish to see the values that are being sent

into it as a way to determine whether the problem occurs

inside or outside the abstraction. This requires one of two

things: a) modification to the existing patch which carries

with it the loss of any stored internal state and the potential

of introducing new bugs or behavior that can impede the

search for the bug, or b) foresight during the initial imple-

mentation of the patch resulting in debugging components

that will aid in our current situation.The former is cumber-

some, and the latter, when generalized to all types of de-

bugging situations, requires the kind of forward thinking

design that is particularly difficult in dynamic and specula-

tive work.

One of the tenets of AOP is that the programmer should

be oblivious to future aspects that may be applied at a later

date, obviating the need for the programmer in our exam-

ple to predict future debugging situations. One must still

ensure that each inlet and outlet of the abstraction is con-

nected to an o.in or o.out, but assuming those hooks are in

place, the input to a patch may be produced as follows (see

figure 2).

1. Create a new patch and instantiate o.aspect.receive.

2. Filter the stream of bundles based on the port type

(and possibly other contextual information).

3. Display the data in an appropriate way if it matches

the contextual criteria.

4. When the visualization is no longer necessary, save

the aspect in case it may be useful in the future, and

simply close the window. If it becomes useful again,

reopen it.

Figure 2: o.aspect.print

4. MAX/MSP IMPLEMENTATION

The implementation of AOP in Max that we introduce here

makes use of Open Sound Control [7] as a rich, composite

data type, and the odot library [8] for providing contex-

tual information and high-level processing of OSC data.

AOP is implemented in Max using a pair of Max “abstrac-

tions” or shims called o.in and o.out which are placed im-

mediately after and before each inlet and outlet in a mod-

ule, respectively. o.in and o.out are thin wrappers around

o.port which collects contextual information from its en-

vironment such as the name of the module it is in and the

name of the parent patch, as well as the arguments to those

patches. This data is added to the OSC bundle along with a

“return address” and sent, using Max’s built-in “send” ob-

ject, to the global location “o.aspect”, i.e., [send o.aspect].

We provide two additional abstractions that aid in writ-

ing aspects: o.aspect.receive which simply wraps [receive

o.aspect], and o.aspect.send which uses the “return address”

to set the forward object to send to that location (see figure

3).

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1588 -

Figure 3: o.aspect.send

To create an aspect, one builds a Max/MSP patch and

instantiates o.aspect.receive and o.aspect.send (both with

no arguments). o.aspect.receive will produce all messages

sent to the location “o.aspect”. The bundle can then be

processed according to the advice that this particular aspect

provides. Certain aspects may choose to inject data into

the bundle (e.g., profiling data) in which case the aspect

should send the modified bundle back using o.aspect.send.

If no modifications are made, this step may be skipped and

a copy of the original bundle will be produced after the join

point.

The following sections describe the implementation of

o.port and o.aspect.joinpoint.

4.1 o.port

1

2

3

4

5

Figure 4: o.aspect.port

o.port (see figure 4) is responsible for gathering contex-

tual information about its environment, blending it into the

bundle, passing it to o.aspect.joinpoint, and outputting the

result. o.port is a general mechanism that makes use of

o.aspect.joinpoint and also serves as the location for imple-

menting other hooks to extend the functionality of a mod-

ule.

The following enumerated items correspond to those in

figure 4.

1. OSC bundles are processed and all other non-OSC

data is simply passed through untouched.

2. The port type, “inlet” or “outlet”, is bound to /o port/type

and blended into the incoming OSC stream.

3. The context information for this port is blended into

the incoming OSC stream.

4. The bundle is passed to the join point.

5. All contextual information is stripped off before out-

putting.

4.2 o.aspect.joinpoint

1

2

3

4

5

6

7

Figure 5: o.aspect.joinpoint

o.aspect.joinpoint (see figure 5) is responsible for dis-

patching incoming OSC bundles to any pointcuts that may

be instantiated. If no pointcuts are in place, a copy of the

bundle is simply passed through unchanged.

The following enumerated items correspond to those in

figure 5.

1. OSC bundles are processed and all other non-OSC

data is simply passed through untouched.

2. A copy of the incoming bundle is stored in o.collect.

This will be sent out as is if no data is returned,

or a union operation will be performed producing

a bundle containing the original data and any data

added by any aspects. After the bundle is passed to

o.collect, it is processed by the following steps.

3. A “return address” is created using the unique nu-

merical id created using the “0” lexical substitution

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1589 -

variable and blended into the OSC bundle.

4. Contextual information is generated using o.context

and blended into the OSC bundle.

5. The bundle is sent to the named global location “o.aspect”.

6. If a bundle is received here, the “return address” is

removed and it is sent to o.collect which will com-

bine it with the original.

5. A MORE DETAILED EXAMPLE

1

2

3

5

4

Figure 6: A granular synthesizer that chooses the fre-

quency of each grain from a spectrum produced by

sigmund∼ using the amplitudes of each frequency com-

ponent as a probability distribution.

In this section, we use the implementation of a granular

synthesizer to discuss the use of aspects in the develop-

ment process. The granular synthesizer, seen in figure 6,

consists of two parts: code that chooses the frequency of a

grain, and the code to sonify the grain. In this example, we

take the spectral output of Miller Puckette’s sigmund∼ ex-

ternal 2 and choose frequencies at random from it using the

amplitudes as probabilities. This ensures that more grains

will be set to those components that had a greater ampli-

tude in the spectrum. The sonification can be done with

any suitable polyphonic synthesizer—in our case, we use a

simple enveloped sine wave. The following is a description

of each component of figure 6.

1. Encapsulated logic for playback of sound files with

groove∼.

2. Capture output from sigmund∼ and encode as OSC.

3. Drive the granular synthesizer with a clock indepen-

dent of the rate of output of sigmund∼.

2 http://crca-archive.ucsd.edu/ tapel/software.html

4. Choose a random frequency from the spectrum us-

ing the amplitudes as a (categorical) probability dis-

tribution.

5. Sonify a grain at the chosen frequency.

1

2

3

4

5

6

Figure 7: Choose a frequency at random using a list of

amplitudes as probabilities.

The module called spec-sample draws a random sample

from the spectrum and is implemented as follows (see fig-

ure 7).

1. Inlet with o.in.

2. Store a copy of the bundle in order to blend derived

data into it.

3. Extract the list of amplitudes.

4. Treat the list of amplitudes as a probability mass

function, convert it to a cumulative distribution func-

tion, and draw a random sample from it.

5. Assign the frequency corresponding to the random

index to the address /freq.

6. Output the bundle, passing through o.out first.

5.1 Visualization

While developing this granular synthesizer, we may want

to visualize its output. Normally, we would patch some-

thing together in the main patch, however, such ad hoc

work is often discarded when not needed in order to clean

the patch up and optimize it for efficiency. AOP can assist

here as seen in figure 8. We instantiate o.aspect.receive

and filter any incoming OSC data by looking specifically

for bundles that come from outlets and are sent from mod-

ules called “spec-vis”. We then interleave the frequencies

and amplitudes for display with resdisplay 3 and display

the data bound to /freq using multislider.

5.2 Extension and Experimentation

We may wish to add additional behavior to our program,

for example, spectral smearing which we could implement

3 http://cnmat.berkeley.edu/downloads

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1590 -

http://crca-archive.ucsd.edu/~tapel/software.html
http://cnmat.berkeley.edu/downloads

Figure 8: An aspect used to visualize the data computed

in spec-sample.

by adding a random value to the chosen frequency. We

may want to experiment with different families of proba-

bility distributions, and ultimately we may wish to discard

this behavior if it proves to be uninteresting. Rather than

perform many edits on a working patch, we can contain

this speculative work in an aspect as seen in figure 9.

We first look for OSC bundles that came from the outlet

of the spec-sample patch. We then blend in the name of a

probability distribution and its parameters which is used to

generate a random value that is added to the value of /freq.

Figure 9: An aspect used to experiment with different

probability distributions for smearing the spectrum.

6. CONCLUSIONS AND FUTURE WORK

We have presented an implementation of aspect-oriented

programming for data-flow languages such as Max/MSP

and PD, which can simplify a variety of tasks in arts/media

programming of an agile and speculative nature.

Aspect oriented programming is a relatively recent paradigm

with a growing community of users exploring where it can

be effective. Our contribution in this work is to bring the

paradigm to the music and intermedia communities. As

well as having noticeable positive effects on our own pro-

ductivity we have discovered that this style of program-

ming requires extensions to the core programming environ-

ments especially in the area of introspection. We have also

found interesting opportunities to extend aspect-oriented

programming afforded by visual programming environments.

For example, it is effective to write aspects that change the

colors of Max/MSP object boxes,text and patch chords to

contextualize state changes and program flow.

Acknowledgments

This work was supported in part by the TerraSwarm Re-

search Center, one of six centers supported by the STAR-

net phase of the Focus Center Research Program (FCRP) a

Semiconductor Research Corporation program spon-sored

by MARCO and DARPA.

7. REFERENCES

[1] A. Cockburn, Agile Software Development: The Coop-

erative Game, 2nd ed. Addison-Wesley Professional,

2006.

[2] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, Eds.,

Aspect-Oriented Software Development. Boston:

Addison-Wesley, 2005.

[3] “Principles behind the agile manifesto,”

http://agilemanifesto.org/principles.html, accessed:

2014-03-29.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Lopes, J. marc Loingtier, and J. Irwin, “Aspect-

oriented programming,” in ECOOP. SpringerVerlag,

1997.

[5] I. Akkaya, P. Derler, and E. Lee, “Aspect-oriented fault

modelling and anomaly detection in Ptolemy II.”

[6] D. Patterson and A. Fox, Engineering Software as a

Service: An Agile Approach Using Cloud Computing.

Strawberry Canyon LLC. Kindle Edition, 2014.

[7] M. Wright and A. Freed, “Open sound control: A

new protocol for communicating with sound synthe-

sizers,” in Proceedings of the International Computer

Music Conference, (Thessaloniki, Hellas), 1997, pp.

101–104.

[8] A. Freed, J. MacCallum, and A. Schmeder, “A dy-

namic, instance-based, object-oriented programming

in max/msp using open sound control message dele-

gation,” in Proceedings of the International Computer

Music Conference, 2011.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1591 -

http://agilemanifesto.org/principles.html

