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ABSTRACT

We present AutoRhythmGuitar, a simple computer-aided

composition model which algorithmically composes real-

istic rhythm guitar tablature. AutoRhythmGuitar takes as

input a downbeat-synchronised chord sequence and gener-

ates a digital score in both traditional notation and tablature.

Our model is data-driven, trained from digital tablatures

obtained from the internet. By varying this training data,

we are able to model individual rhythm guitarists’ rhythmic

and melodic styles. Algorithmic evaluation of our system

reveals that it effectively models style, whilst a qualitative

analysis by the authors confirms that the resulting tablatures

are realistic and, for the most part, playable.

1. INTRODUCTION

In this paper, we consider the problem of computer-aided

composition for the guitar. In popular music, guitar parts

can broadly be split into rhythm parts (mostly outlining the

main harmony and rhythmic pulse) and lead parts (mostly

melody lines and solo breaks) – we focus on composition

of rhythm guitar parts in the current paper. The main data

flow and processes of our system are outlined in Figure 1.

1.1 Motivation

Our motivation for investigating this problem is two-fold.

First, we wish to investigate if an analysis of guitarist per-

formance reveals significant musician-specific trends in

rhythmic and melodic devices. Furthermore, we believe

automatic generation of guitar parts in a particular style

could be used as a pedagogical aid, to help amateur mu-

sicians learn different approaches to playing over a given

chord sequence. It is worth noting at this point that the

generation of complex rhythm guitar parts, in the style of

a given player, is a non-trivial task (see Sub. 2.2) and also

currently beyond the capabilities of software such as ‘Band

in a Box’ 1 .

1 http://www.pgmusic.com/bbwin.htm
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Figure 1. AutoRhythmGuitar’s main processes. The sys-

tem takes as input a downbeat-synchronised chord sequence

and conducts a structural analysis. The detected segments

are then combined with rhythms from a set of training tab-

latures and clustered into an appropriate number of groups.

Meanwhile, n−gram models and state distances are cal-

culated from the training data. The output of these three

processes are then used to construct a digital tablature in

MusicXML format.

1.2 Challenges and proposed solutions

There are many obstacles to overcome when devising an

algorithmic composition method for the guitar. The first

challenge is that unconstrained algorithmic composition

is extremely challenging given the variety and complex-

ity of music, and even with human aid (Computer-Aided

Composition, CAC) developing methods which generalise
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well to unseen situations remains problematic. We tackle

these challenges in the current work by having users of Au-

toRhythmGuitar input a chord sequence to the model (see

Figure 1), and by using resources from the web, transpos-

ing the data to maximize the generalisation potential (see

Subsections 4.4 and 5.1).

Second, we are not currently aware of any CAC systems

which are guitar-specific. If existing general–purpose CAC

models are used for our task, the resulting piece may not be

playable on the guitar, owing to sudden jumps around the

neck. This would therefore necessitate an arrangement of

the piece (see 2.2 for a definition of this term). Furthermore,

these systems do not incorporate appealing features of the

instrument such as hammer-ons, pull-offs, or slides. In this

paper, we identify these as guitar-specific challenges and

solve them by composing rhythm guitar music directly in

the tablature space (see 2.1). Furthermore, we use algorith-

mic means to ensure that the resulting music is playable

(4.4), with models for the previously-mentioned ornaments

built into the model (4.5).

Finally, we observed (see 4.1) that professional rhythm

guitarists use a high degree of repetition within songs, and

that this repetition appears to be grouped into structures.

Without prior knowledge of musical structure, existing tech-

niques would fail to replicate this behaviour. An analysis

of the input chord sequence is therefore conducted in this

work to make our output tablatures structurally consistent

(see 4.5).

1.3 Paper structure

In Section 2, we discuss tablature notation and outline what

we believe to constitute a rhythm guitarist’s style. Section

3 then provides an overview of the relevant literature in

computer-aided composition and automatic guitar arrange-

ment. Our compositional model is presented in Section

4, and evaluated and analysed in Section 5. Finally, con-

clusions and suggestions for further work are outlined in

Section 6.

2. BACKGROUND

2.1 Guitar tablature

The pitch ranges for guitar strings significantly overlap, so

that for most pitches there exists no unique playing position

(string and fret number) for a given note. This one-to-many

relationship means that guitarists must make a decision on

where best to fret each note on the instrument to minimise

overall fretting hand movement, which can be challenging

for beginner guitarists [1]. For this reason tablature notation

(or simply ‘tab’, plural ‘tabs’), which explicitly specifies

the strings and frets on which notes are to be played, was

developed. Examples of tabs alongside traditional musical

notation are shown in Figure 2. Due to its unambiguous

nature, tab is extremely popular amongst musicians, and it

is for these reasons and with our pedagogical motivation in

mind that the current study focuses on producing tablature

output for rhythm guitar.

2.2 Styles of rhythm guitar playing

Despite the discussion above, it should be noted that the

many-to-one mapping of fingering positions to musical

score offers practitioners of the guitar great freedom in

hand positioning and note selection given an underlying

chord, and as such can be considered a creative benefit of

the instrument. We postulate that professional guitarists de-

velop a preference for certain chord shapes and fingerboard

positions, and that this can be considered an aspect of their

style (see examples below).

To avoid confusion with existing terminology 2 , we in-

troduce the term melodic voicing to mean the free choice

of notes and fingerboard positions a guitarist makes when

composing a rhythm guitar part for a given chord. Illustra-

tive examples showing the melodic voicings five popular

guitarists have taken to playing over a C major chord are

shown in Figure 2.

In the first measure, Eric Clapton plays a C ‘fifth’ chord

(no third) in third position followed by a melodic break in

the A minor pentatonic scale. The second measure shows

Jimi Hendrix adding a ninth to the chord in eighth position

with a leading melody to the D chord which follows (not

shown). Jimmy Page takes a straightforward ‘hard rock’ ap-

proach in third position, whilst the last two guitarists (Keith

Richards, The Rolling Stones; Slash, Guns N’ Roses) opt

for open position melodic voicings, but show two distinct

approaches; the former strumming three or four note chords

with alternating bass, the latter arpeggiating the chord in a

typical rock ballad style.

It is precisely these aspects of rhythm guitar playing which

will be attempting to model and imitate in this work. We

next discuss the literature relevant to the current study.

3. EXISTING WORK

3.1 Computer-aided composition

Algorithmic composition can be described as the process of

using a sequence of rules to combine musical parts into a

composition [2] and has a rich and varied research history

(see, for example, [3, 4] or the survey [5]), of which an

interesting subset is Computer-Aided Composition (CAC)

[6, 7, 8]. In this scenario, the compositional task is split

between the computer and a human expert.

In line with the increase in availability of digital musical

information, data-driven approaches to CAC have gained

popularity in recent years. Widmer [9], and Schwanauer

and Levitt [10] were both early adopters of the data-driven

approach in the harmonization of a given melody. Con-

klin et al. [11] examined the prediction and generation of

chorale music from examples. Dubnov et al. [12] investi-

gated the modelling of musical style, learning from MIDI

input in a wide variety of styles. Pachet and various collab-

orators [13, 14] have investigated the use of Markov chains

for generation of novel content, with constraints to avoid

plagiarism.

2 fingering decision: mapping a score to tab, arrangement: minimally
modifying a piece initially not written for guitar to make it playable [1].
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Figure 2. Examples of rhythm guitar styles taken by five professional guitarists when faced with a C major chord measure.

Musical score is shown above, tablature below. Samples are taken (left to right) from “Badge” (Clapton/Harrison), “Fire”

(Hendrix), “Immigrant Song” (Page/Plant), “Wild Horses” (Jagger/Richards), “Knockin’ on Heaven’s Door” (Dylan, arranged

by Guns N’ Roses). Notation used: / = slide (glissando), ⌣ / ⌢ = hammer-on/pull-off, X = muted string

3.2 Automatic guitar fingering and arrangement

Sayegh first considered the problem of automatic arrange-

ment for stringed instruments in 1989 [15], introducing

an optimum path paradigm solution to the fingering prob-

lem, which was later extended by Radicioni et al. [16] to

minimise phrase-level, rather than global, fingering diffi-

culty. The latter model was evaluated on a single classical

guitar piece of twenty-five measures, consisting of single

notes (no chord tones), and was judged to be similar to the

arrangement provided by a musical expert.

The path difference learning algorithm was introduced by

Radisavljevic and Driessen [17], which learns the weight

costs of a particular playing style based on labelled tabs.

On a set of seven classical guitar pieces, the number of

fingering errors when compared to a human arrangement

dropped from 101 to 11 on the training set as the model

converged, but they noted that results did not generalise

well to unseen data due to a lack of training examples.

Genetic algorithms have been explored by Tuohy et al. [18,

19] as a means of efficiently exploring the large search space

created in the fingering decision problem, in which the

majority of the generated tablature coincided with human-

made annotations on selections from 34 guitar pieces of

varying style. Recently, Yazawa et al. [20] also investigated

the transcription of synthesized MIDI audio into playable

guitar tablature by the use of playability constraints.

Finally, an Input-Output Hidden Markov Model has been

suggested by Hori et al. [1] to assign fingerings to a given

piece, where the hidden states represented physical posi-

tions of the fretting hand, and the observed states repre-

sented the notes produced. Model output was compared to

commercial software on three pieces totalling seven mea-

sures, although no quantitative evaluation was performed.

4. MODEL DESCRIPTION

4.1 Coupling of rhythm and melody

To gain insight into how best to approach rhythm guitar

composition, we begun by investigating some examples

produced by professionals. We obtained digital guitar tabs

for a selection of guitarists from GuitarProTab.net 3 . These

tabs were exported to MusicXML via the GuitarPro soft-

3 http://www.gprotab.net/index.php

ware 4 to facilitate computational analysis. The rhythm for

each measure was encoded as a length 16 vector r represent-

ing the note type at each sixteenth note. Measures which

contained note durations shorter than this or tuplets were

omitted from analysis.

We classified each sixteenth note as either an onset; held

(sustained) note; rest; or muted note, denoting these rhyth-

mic states as [0, 1, 2, 3] respectively, so that r ∈ {0, 1, 2, 3}16.

We then defined rhythmic similarity between pairs r1, r2

using the normalised Hamming similarity [21]:

Srhythm(r1, r2) =
1

16

16
∑

i=1

1(ri1 = r
i
2). (1)

For melodic similarity, we collected the fretboard positions

of every note or chord into a list of (string, fret) pairs, calling

this a model state. For example, the state corresponding

to the first quarter note in measure 1 in Figure 2 would be

[(3, 5), (4, 5), (5, 3)]. Given that the number of states in a

measure may differ and we are interested in the overlap

of states and not their order in particular, we opted for the

Jaccard index to define melodic similarity between two

measures M1,M2:

Smelody(M1,M2) =
|M1 ∩M2|

|M1 ∪M2|
,

where | · | indicates set cardinality and the intersection/union

for measures M1,M2 is taken over states in the measures.

We then plotted the rhythmic and melodic similarities in a

Self Similarity Matrix (SSM), a selection of which can be

seen in Figure 3. It can be see from Figure 3 that rhythm

guitar compositions typically feature a large amount of repe-

tition, and that similarities in rhythm (below main diagonal)

and pitch (above main diagonal) are strongly correlated.

This coupling is easily understood from the perspective of

musical structure: it seems that rhythm guitarists employ

distinct rhythmic and melodic patterns in sections such as

verse, refrain, or chorus.

To this end, the first stage of our processing is to perform

a structural analysis of the input chord sequence, which

we assume contains cues on the structural landscape of the

target song. This information will then be used to assign

rhythms and melodic voicings (see Figure 1).

4 http://www.guitar-pro.com/en/index.php
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Figure 3. Self Similarity Matrices (SSM) for rhythmic (be-

low main diagonal) and melodic (above main diagonal) sim-

ilarity for a selection of three tabs. Top row: “Layla” (Clap-

ton/Gordon), “Jumping Jack Flash” (Jagger/Richards). Bot-

tom row: “Paradise City” (Rose, Slash, Stradlin/McKagen,

Adler). Dark areas indicate high similarity.

4.2 Chord segmentation algorithm

We employ a novelty-based approach to detecting struc-

ture in our input symbolic chord sequence, adapting the

approach by Foote [22]. Our algorithm takes as input a text

file of M lines – one for each measure in the song. Each

line describes the chords in a measure, which we assume

to be in common time (4,4) and at the sixteenth-note res-

olution. The first stage of pre-processing is to label any

measures which contain only no chord (silence etc.) as a

unique segment type.

An M × M self-similarity matrix S is then computed,

with similarity between the two length 16 vectors defined

by Hamming similarity (Equation 1). We then pass an n×n
binary checkerboard matrix C through the diagonal of S,

with the novelty at time t calculated as

Novelty(t) =

t+n/2
∑

i=t−n/2

t+n/2
∑

j=t−n/2

Ci,j × Si,j .

The resulting novelty curve is then normalised to [0, 1], and

values which exceed the σth percentile selected as segment

boundaries.

In informal testing, we found that this technique had high

recall but poor precision, since the novelty in a close neigh-

bourhood of true segment boundaries often exceeded the

σth percentile. To counteract this behaviour, we discarded

any segment boundaries at t which had another boundary

with higher novelty within [t−n/2, t+n/2]. Each segment

between boundaries was then labelled as a new segment.

Finally, we considered pairs of segments which were

an integer multiple length of each other for merging (as-

signing the same segment label). We merged segments
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Figure 4. Example of our chord segmentation algorithm

on “Imagine” (Lennon). Top: self-similarity matrix, with

dark shades indicating high similarity. Below: the resulting

novelty curve when passing an 8× 8 checkerboard through

the diagonal of this matrix. The segments as detected by

the algorithm in Subsection 4.1 are overlaid, with segments

of the same label having the same shade.

s1 = [t1, . . . , t1 + l] and s2 = [t2, . . . , t2 + k × l] if each

of the k subsequences

{[t2, . . . , t2 + l], . . . , [t2 + (k − 1)× l, . . . , t2 + k × l}

has Hamming similarity with s1 greater than τ . An example

of our algorithm for the chords to “Imagine” (Lennon) is

shown in Figure 4, where in this example and throughout

the remainder of this paper we set the parameters n = 8,

σ = 75, τ = 0.75. Our algorithm has labelled the first and

last two measures as ‘No chord’ segments, and identified

five main segments, two of which (three and five) have

been assigned the same label. These segments constitute

contiguous chorus and verses, which were unfortunately

not merged with the second main segment due to a segment

length difference of one measure (12 vs. 11). Improving

and evaluating this simple segmentation algorithm is part

of our planned future work.

After segments in the target chord sequence have been

automatically analysed, the segments and labels are fed into

AutoRhythmGuitar’s two main processes: rhythm assign-

ment and melodic voicing assignment. These are detailed

in the following two Subsections.

4.3 Rhythm assignment

As per the examples in Subsection 4.1, we assume time is

discretized to sixteen-note resolution in common time, and
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denote the rhythm of a measure as r ∈ {0, 1, 2, 3}16 (recall

the rhythmic states: note onset, held note, rest, muted note).

The total number of unique rhythmic measures under this

model is 416, although we believe the number of rhythms

of this type used by popular music guitarists to be far fewer

than this in practice. For this reason, in this paper we take

an example-based approach to rhythm assignment. That

is to say, the generated rhythms will come directly from

our training data. However, the question remains as how

to assign one of the training rhythms to each of the test

measures.

In tackling this problem, we assume that guitarists have

a number of rhythmic styles at their disposal, with each

style consisting of a set of similar rhythms. For example,

one rhythmic style might consist mostly of rests with the

occasional muted sixteenth note, whilst another might con-

sist only of quarter and half note onsets. To discover these

groupings, we therefore clustered our training rhythms.

To set the number of desired clusters c, we turn to our input

chord sequence, which we assume has been segmented into

s distinct segment types via the algorithm in 4.2. It is clear

to us that in order to maximise the rhythmic distinction

between segments (thus emulating the behaviour seen in

4.1), we should set c = s.

To see this, suppose c < s. Then there are fewer rhythmic

clusters than distinct segments, and some segments would

have the same rhythmic style, which we consider undesir-

able. Conversely, if c > s then there are more rhythmic

clusters than segments and some rhythmic styles would

have to be discarded. Furthermore, the rhythmic clusters in

this scenario will be less well separated than if c ≤ s.

The rhythms obtained from the training data were there-

fore clustered into s clusters. We opted for the spectral

clustering algorithm, which takes an input an arbitrary dis-

tance measure between data points (for which we used the

Hamming distance, 1− Equation (1)). Seeing no other ob-

vious way to proceed, we matched the resulting rhythm

cluster j to chord segment i randomly. However, in sam-

pling from rhythm cluster j, we sample an example rhythm

r from cluster j with probability proportional to the fre-

quency of r in j. This ensures that more common rhythms

within a cluster are more likely to appear in the output.

4.4 Melodic voicing assignment

Through the processes in Subsections 4.2 and 4.3, we have

segmented the target chord sequence into labelled segments

and have assigned rhythms to each measure. Our task now

is to assign a state (recall: a model state is a list of string

and fret pairs) to each note onset.

4.4.1 n–gram modelling

Recall one of our goals is to create playable guitar tablature

(see challenges, Subsection 1.2). To this end, whilst a chord

is constant within a measure we use n–gram modelling,

a technique popular for modelling many time-dependent

stochastic processes including automatic speech recognition

[23] and chord estimation [24].

For each chord in the training data, we therefore collected

initial and bigram counts for each state. A melodic voicing

assignment for a chord y is then produced by first sampling

from the initial distribution for y, followed by a biased ran-

dom walk on the state distribution for y. However, before

normalising our counts to form probability distributions, we

first transposed our data, as detailed below.

4.4.2 Transposition

In order to maximally exploit the available training data

and our model’s generalisation potential, all training chords

and states (except those which contained open strings) were

transposed up and down the guitar neck to increase the num-

ber of state-to-state transitions witnessed. The underlying

assumption which facilitates this is that a guitarist’s melodic

voicing approach is pitch-independent. In other words, that

each of the first three guitarists in Figure 2 would equally

likely play the same melodic patterns a fret higher if pre-

sented with a C♯ major chord instead of C major chord,

analogously for one fret down / B major chord etc.

We therefore transposed each state in the initial and bigram

counts for every chord down the neck until the lowest fret

played was equal to 0, and up the neck until the highest

fret played was equal to a pre-defined maximum, which

we set to be 12. The counts for the original state were

then added to the counts for the transposed chords. After

this was completed for every chord and state, the resulting

counts were normalised to sum to unity.

This ‘transposition trick’ means that data for chords in

more common guitar keys ( the ‘open’ keys: G, C, D for

example) may be used to train models for keys in which

there is likely to be less data (A♭, B♭ etc. which do not

feature convenient open string pitches in standard tuning),

all the while meaning it is likely that each bigram with non-

zero probability is playable (since it appeared at least once,

perhaps transposed, in the training data). Crucially, it also

allows AutoRhythmGuitar to generalise to chord labels not

seen in the training data (addressing one of the challenges

of this work, see 1.2), so long as the unseen chord type

(major, diminished etc) appears at least once.

4.4.3 State-to-state distance

Using the above techniques we found that our model pro-

duced playable tab whilst a chord was constant, but that

between chords unplayable sequences were sometimes in-

troduced, due to the model sampling from the initial distri-

bution for the next chord with no knowledge of the current

hand position. To counteract this behaviour we introduced

a state-to-state distance inspired by Hori et al. [1].

The distance proposed in [1] takes into account the finger-

ing arrangements of both states as well as the time allowed

for the change, allowing for greater movement if time al-

lows. They define the distance D to s2 from s1 given t
(elapsed time) via a modified Laplace distribution:

Dstate(s2|s1, t) =
1

2t
exp

(

−
|I2 − I1|

t

)

1

1 + I2

1

1 +W2

1

1 +N2

, (2)

where t indicates the time since the last note was fretted, I1
and I2 are the index finger positions of states s1 and s2, W2
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is the ‘fret span’ of s2 (max. fret minus min. fret), and N2

is the number of fingers used in s2.

We use Equation (2) as above with the following simplifi-

cations, given we had no fingering data for our states. We

set I1, I2 to be the minimum fret for each state. We assume

the number of fingers used is equal to the number of non-

open string notes in the state. This assumption is valid for

all single notes and most chords, except those which use

barres.

Finally then, we set the probability p of the first state of a

chord y being s given a time lapse of t equal to a weighted

sum of the initial probability of s given y, Pini(s|y) and the

distance from to this state from the previous model state:

p = αPini(s|y) + (1− α)Dstate(s|previous state, t).

In our experiments for this paper we set α = 0.5 without

any attempt to optimise performance.

4.5 Guitar-specific ornaments

After the rhythms and states for our target chord sequence

have been assigned, we added guitar-specific ornaments

to enhance the realism of AutoRhythmGuitar’s output, ad-

dressing some of the challenges mentioned in Subsection

1.2. Specifically, we allow a hammer-on (note sounded

by ‘hammering’ from one fret on a string to a higher fret

without plucking/picking), pull-off (analogously) or slide

(glissando) between states, with the probabilities of these

special transitions between states occurring learnt from the

data using the method detailed in Subsection 4.4 (including

transposition). Note that these ornaments may be learnt in

an artist-specific manner, using the exact same methodol-

ogy as for the state transitions, by selectively sampling our

training data.

4.6 Structural consistency

Finally, if the current measure is part of a segment for which

content has already been generated, AutoRhythmGuitar

simply repeats this content. This is conducted to emulate

the behaviour seen in Figure 3, and to produce a structurally

consistent composition.

5. EXPERIMENTS

5.1 Training Data

We choose five well-known guitarists (Jimi Hendrix, Keith

Richards, Jimmy Page, Slash, Eric Clapton) to train our

model, and downloaded ten digital tabs (GuitarPro format

files) for each guitarist (song titles available on our Vimeo

page, see Subsection 5.3). The guitarists and tabs were

chosen according to popularity (measured by number of

available tabs) and quality (similarity to audio recording

and author knowledge) with songs chosen which were (at

least predominantly) in common time and standard tuning

(or down one semitone, which is easily transposed). Where

more than one tab was available for a song, the most accu-

rate or complete tab was chosen. Each digital tab was then

converted to MusicXML format via GuitarPro for analysis.

Chord annotations and hierarchical beat structure (down-

beat and main pulse) for each song were then obtained

automatically using the online service Songle [25] using

the official YouTube video as input, and were subsequently

checked and edited for correctness by an expert musician.

5.2 Algorithmic evaluation

In this Subsection, we investigate if our model is able to

model rhythmic and melodic rhythm guitar styles. This is

realised by training models for our five guitarists of choice

and comparing summaries of the distributions obtained.

If the distributions are significantly non-homogeneous, it

gives evidence that each model represents a different style

(if indeed each guitarist has a unique style).

To this end, we trained five models and computed sum-

mary distributions as follows. Each rhythm r ∈ {0, 1, 2, 3}16

in the training set was converted to a categorical ‘1-of-4’

vector r̂ ∈ {0, 1}64. These vectors per measure were then

summed over the songs and normalised per sixteenth note,

resulting in a vector for each artist which represents the

probability of a note onset, held note, rest, or muted note

at each of the sixteen metric positions. For each chord, we

computed the probability of each state associated with this

chord occurring by simply counting and normalising.

Distributions P (x), Q(x) were then compared based on

the Kullback-Leibler (KL) divergence:

DKL(P ||Q) =
∑

i

ln

(

P (i)

Q(i)

)

P (i). (3)

For rhythmic similarity, we used the symmetric KL-divergence:

DKL(P,Q) = DKL(P ||Q) +DKL(Q||P ). (4)

For melodic similarity however, we conditioned Equation

(3) on the probability of each chord occurring:

DKL(P (s|y)||Q(s|y)) =
∑

y

P (y)
∑

s

ln

(

P (s|y)

Q(s|y)

)

P (s|y),

where P (y) is the probability of chord y occurring and s
are the states for chord y. This divergence was then made

symmetric analogously to Equation (4). The results of these

experiments can be seen in Figure 5. We see few areas

of self-similarity and a fairly high degree of homogeneity,

indicating that the distributions are ‘far apart’, giving ev-

idence that rhythm guitarists have a distinct style, which

AutoRhythmGuitar has effectively modelled. In both Sub-

figures the higher distances in row/column 4 suggest that

Keith Richards’ rhythmic and melodic style are the most

unique seen in the dataset (see also 5.3).

5.3 Qualitative analysis

Since our system outputs MusicXML, it can be easily im-

ported into a variety of existing software packages for syn-

thesis. To assess the quality and playability of the tabs our

system generates, we therefore trained one model for each

of the five guitarists listed above and imported our model’s

output into GuitarPro. We chose “Imagine” (Lennon) as a
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Figure 5. Rhythmic/Melodic (left/right) KL-divergence

between guitarists. [‘C’, ‘H’, ‘P’, ‘R’, ‘S’] = Eric Clapton,

Jimi Hendrix, Jimmy Page, Keith Richards, Slash. The

difference in magnitude between the plots is due to the

melodic model having many more states than the rhythmic

model.

test case as it is a well-known song with an interesting array

of chords which does not feature a guitar part.

We synthesized the output of our model in GuitarPro with

an appropriate backing track consisting of piano, drums,

melody line and cello, and selected an appropriate guitar

tone for each artist. The results are available for viewing

at our Vimeo page 5 , which we encourage the reader to

visit whilst reading the remainder of this Subsection. A

small number of examples can also be seen in Figure 6. Our

comments on the output (which can also be found in the

video descriptions) make up the remainder of the current

Subsection.

5.3.1 Jimi Hendrix

Jimi Hendrix’s unique rhythm guitar style appears to be

modelled effectively using AutoRhythmGuitar. Throughout

the first verse we see partial chords (over the C chord, see

Figure 6) and melodic phrases using an added ninth (F

chord). An unexpected benefit of implementing muted

notes also occurs in this verse: the muted note (measure 3)

allows the player time to move back to first position. In the

chorus, we see an A minor shape (measure 14) not exploited

by many guitarists, although AutoRhythmGuitar has used it

to minimise the amount of fretting hand movement required.

The remainder of the chorus features typical partial chords

and some interesting passing tones typical of his style.

Subsequent verses feature melodic phrases with many

guitar-specific ornaments such as slides (see Figure 6) and

hammer-ons. The final sections (from measure 26) fea-

ture extensive use of rapid muted notes (measure 31), his

‘thumb over the top’ technique (measure 27) and more par-

tial chords (measure 30).

5.3.2 Keith Richards

Suspended chords are commonly used by Keith Richards,

and this is reflected from the outset in this model output

(Csus4 over C chord, measure 2, see also Figure 6). The

slightly unusual jump from twelfth fret to first position

(measure 3) is a result of the α parameter too strongly

enforcing the fretboard locality constraint, when moving

5 https://vimeo.com/user25754596/videos

from measure 2 to measure 3. The chorus and second verse

are both harmonically sound and also playable, and feature

a major chord voicing not used by any other guitarists in

our dataset (measure 20).

The advantage of using a state-to-state distance is clearly

highlighted in measures 27-28, however: with hardly any

fretting hand movement, the player is able to provide a

melodic voicing for three distinct chords. The chord voicing

for the F chord in measure 26 with the additional fifth note

on the top E string is also unique to Keith Richards in our

dataset, and is repeated over the E7 measures in this song.

The final unique section (measures 37–45) feature a more

minimal rhythm guitar approach, with just single notes or

diads highlighting the underlying chords.

5.3.3 Jimmy Page

AutoRhythmGuitar’s output in the style of Jimmy Page

begins with melodic passages over the C chord and a chal-

lenging fretboard movement over the F chord, meaning that

some manual tuning of the parameter α might be required

to increase playability for this piece. However, in the subse-

quent verse these issues are not seen, and the chorus shows

the first case of Page’s arpeggio style (measure 26).

Measure 30 then introduces the non-diatonic B♭ note, al-

though the result is in fact harmonious. The concluding

verse again uses arpeggios, this time over an entire measure

(measure 37 and Figure 6). Note again AutoRhythmGui-

tar’s ability to select an appropriate F chord voicing (eighth

position) to closely match the previous measure’s final state.

5.3.4 Slash

Slash’s approach to rhythm guitar playing is typical of the

hard rock style, and this is evident immediately from this

output. The rhythmic approach is exclusively eighth notes

in the first verse, with melodic voices consisting of either

a repeated root note or fifth chord (see measure 2, Figure

6). Note again that there are many ways in which these

melodic voices could be played, but that AutoRhythmGuitar

has selected a pair which involve minimal fretting hand

movement. The first chorus then introduces some muted

notes in between this same basic approach (measure 16).

The second verse continues this theme, but unfortunately

contains an almost impossible jump from open position C

to two G notes an octave apart (measure 18). The refrain

(beginning measure 30) features some slight dissonance (C

and B notes over a C major chord, measure 31) but this

could be an aspect of Slash’s playing, since it appears in

our training data. The final unique section is very minimal,

featuring single sustained root notes.

5.3.5 Eric Clapton

The first verse of this output features simple fifth chords and

diads (see Figure 6), with some additional percussive muted

notes. In the chorus, the A minor chord is arpeggiated,

and there is a pleasant melodic line in harmonised sixths,

although some dissonance is introduced with the E♭ over

the F chord. This we discovered was due to us incorrectly

labelling a dominant 7 chord as a major chord in the training

data.
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Figure 6. Example AutoRhythmGuitar output, showing the different rhythm guitar styles our system is able to emulate.

The first measure of the second verse is challenging to play

due to the jump to the tenth fret. In measure 30, we see a

weakness of our system: it has filled the entire measure with

an F fifth chord, neglecting the underlying G chord which

follows. This is due to the dissociation of rhythm and pitch

in our model, which assigns rhythms for a measure without

knowledge of the position of any chord changes contained

within. The remainder of the song is both harmonically

consonant and playable.

6. CONCLUSIONS AND FUTURE WORK

We presented AutoRhythmGuitar, a system which produces

realistic, structurally consistent and (for the most part)

playable guitar tablature in the style of a given artist from a

chord sequence input. Our contributions in this work were

as follows. First, we used an input chord sequence to con-

strain the algorithmic composition problem, with models

per chord trained using data from the web. Second, we

created realistic and playable music by composing directly

in the tab space, using n−gram models, a state-to-state

distance and guitar-specific ornaments to increase the playa-

bility and realism of our output. Our final contribution was

the segmentation of the input chord sequence, in order to op-

timally decide the number of training rhythms and produce

a structurally consistent composition.

In future work, we would like to explore ways of over-

coming some of the limitations of our system, including:

increasing the temporal resolution, improving and evaluat-

ing our segmentation algorithm, methods for optimising the

distance weight α, as well as methods for generating lead

guitar parts. We are also interested in developing our algo-

rithms for use by amateur musicians in the general public,

possibly as part of a web service.
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