
Gene expression synthesis

Alo Allik

http://tehis.net

alo@tehis.net

ABSTRACT

Gene expression programming offers an alternative approach

in the evolutionary computation paradigm evolving popu-

lations of candidate solutions as valid computer programs

that can be used for a potentially wide range of problem

solving tasks, including sound synthesis. This paper pro-

poses Gene Expression Synthesis (GES) as a method to

evolve sound synthesis functions as nested graphs of unit

generators. These functions are encoded into linear chro-

mosomes according to the principles of gene expression

programming and evolved by subjecting the functions to

genetic operations and evaluating fitness. The design of

the fitness functions involves statistical methods and ma-

chine listening algorithms in an attempt to automate the

supervision of the synthesis process. Synthesis parame-

ters for the population of candidate functions are designed

exploring artificial co-evolution, a parallel population of

functions that compute parameter values for the synthesis

functions share their fitness values, while being subjected

to genetic operations including recombination separately.

1. INTRODUCTION

Since the first artificial life experiments by Nils A. Bar-

ricelli in the 1950s, evolutionary computing has inspired

numerous problem solving and model building techniques

including ways to evolve sound synthesis algorithms in-

spired by processes of evolution by adaptation and natu-

ral selection. In our attempts to understand these natu-

ral algorithmic processes, which are purposeless and de-

void of any intention, but nonetheless directly responsible

for all the complexity and intelligent behavior in the nat-

ural world, we keep developing increasingly more pow-

erful technology that enables us to model and simulate,

albeit on a vastly simplified scale, the power of cumula-

tive selection. Genetic algorithms and genetic program-

ming have been firmly established as efficient and produc-

tive stochastic search and optimization methods within the

artificial intelligence field and have been widely used in

various disciplines for years. Gene expression program-

ming was introduced as an improvement to the existing

paradigms, proposed by Candida Ferreira in 2001, by com-

bining the best features of genetic algorithms and genetic

programming[1]. The fundamental differences between

Copyright: c©2014 Alo Allik et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

gene expression programming and its predecessors stem

from the separation of genotype-phenotype representations

and the modular multigenic structure of the chromosomes.

These improvements account for significant increases to

the efficiency of the algorithm for a number of benchmark

problems. The following account describes an experimen-

tal approach to evolving sound generating programs with

the proposed principles and explores creative applications

of evolutionary computation which do not necessarily pre-

sume a definite solution to a problem, but rather an open-

ended solution space to be explored for aesthetic experi-

mentation.

2. SOUND SYNTHESIS WITH EVOLUTIONARY

ALGORITHMS

The evolutionary paradigm has been harnessed in a broad

spectrum of applications in the realm of computer music,

applying the processes of gene expression, selection, re-

production and variation on many different levels of com-

positional hierarchy. Examples can be drawn throughout

all musical time levels, including producing waveforms di-

rectly by expressing binary genotypes as sample level time

functions, evolving synthesis graphs and optimizing pa-

rameters, generating longer time structures and patterns of

motives and phrases, all the way to composing compre-

hensive artificial environments inhabited by listening and

sound-generating agents. Magnus[2] developed a modi-

fied genetic algorithm that works directly on time-domain

waveforms to produce genetically evolved electroacous-

tic music. Garcia[3] proposed using evolutionary meth-

ods for selecting topological arrangements of sound syn-

thesis algorithms and for optimizing internal parameters of

the functional elements. On the phrase and motive level,

there are two classic studies that paved the way for count-

less later explorations: John Biles[4] hierarchical GenJam

system that generates on-the-fly jazz chord progressions

and the “sonomorphs” proposed by Gary Lee Nelson[5].

Jon McCormack[6] developed an interactive installation

of evolving agents influenced by the presence and move-

ment of audience as an example of a comprehensive digi-

tal sonic ecosystem. These are but a few examples of the

wide range of applications for evolutionary algorithms and

by no means meant as a review, rather a random sampling

of applications on different levels of the compositional pro-

cess.

The abundance of different possibilities explored demon-

strates the potential inherent in evolutionary processes which

can exhibit unparalleled efficiency and problem-solving re-

sourcefulness even in a vastly simplified form as compared

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1389 -

mailto:alo@tehis.net
http://creativecommons.org/licenses/by/3.0/

to the forces operating in the natural world. The idea of

automating the design process of sound synthesis algo-

rithms using evolutionary methods has to be considered

in the context of computer music specification. Generat-

ing waveforms by the direct principle of sample-by-sample

calculation, for example, does not necessarily require any

higher level infrastructure or a specialized programming

environment, however, such an approach may complicate

the design of an efficient fitness function, especially con-

sidering unsupervised learning methods. Since the Mu-

sic N programming languages (most prominently Csound),

the encapsulation of sound generating and processing func-

tions into unit generators has cultivated a modular graph

based concept of synthesis with interconnectable functions

as building blocks. Most contemporary synthesis software,

regardless of whether the interface is graphical or text-

based, operates based on this model. The method pre-

sented here has been implemented in the SuperCollider

environment, but is applicable in any audio programming

environment that has adopted the graph based paradigm,

where sound synthesis programs are defined as intercon-

nected unit generator graphs. These graphs can be evolved

by evolutionary programming principles just like any other

computer programs that serve as the solution space for a

particular problem. The question then becomes how to de-

fine or, in other words, encode these graphs in terms of

evolutionary programming.

SuperCollider synthesis topologies have previously been

studied in the context of evolutionary programming. Dan

Stowell[7] presented a genetic algorithm for live audio evo-

lution at the first SuperCollider symposium in Birmingham

2006. The system demonstrates how genetic methods can

be used in a live setting, with modifications to the synthe-

sis process occurring in real time. Fredrik Olofsson [8]

released a similar algorithm for sound synthesis through

his personal website. The goal of his project was to create

genomes that would translate into realtime synthesis pro-

cesses and allow the user to evaluate the results in a frame-

work of a realtime sequencer. The algorithm is, similarly to

the one described above, based on arrays of floating point

values serving as genomes, which were translated into Su-

perCollider synthesis definitions.

The SuperCollider implementation of the gene expres-

sion programming proposed here expands on the founda-

tions of the methods described above. The problem ad-

dressed is how to encode SuperCollider unit generator graphs

as populations of chromosomes and evolve these graphs

using genetic operators. In a similar way, there is a con-

strained selection of unit generators that are included in

the graphs and the translation process produces valid sound

generating functions that are evaluated for fitness. How-

ever, the following description introduces a number of mod-

ifications and distinct features in accordance with the tech-

niques of the gene expression algorithm to introduce an

alternative strategy for evolutionary sound synthesis.

3. COMPONENTS OF GES

Gene expression programming (GEP) is a method of evo-

lutionary computation providing an alternative to the es-

tablished paradigms of classic genetic algorithms (GA) and

genetic programming (GP)[1] [9]. The basic premises that

these methods share in common have been inspired by bi-

ological evolution and attempt to model the natural selec-

tion process algorithmically in computers. All these meth-

ods use populations of individuals as potential solutions to

a defined problem, select the individuals from generation

to generation according to fitness, and propagate genetic

variation within the population by random initiation and

applying genetic operators. The differences between these

algorithms are defined by the nature of individuals. In GAs

the individuals are fixed length strings of numbers (tradi-

tionally binary); in GP the individuals are non-linear tree

structures of different sizes and levels of complexity. GEP

combines these approaches by encoding complex expres-

sion trees as simple strings of fixed length to overcome the

inherent limitations of the previous methods. In GEP the

genotype and phenotype are expressed as separate entities,

the structure of the chromosome allowing to represent any

expression tree which always produces a valid computer

program. Another feature to set GEP apart from its pre-

decessors is the structural design of GEP individuals that

allows encoding multiple genes in a single chromosome.

This facilitates encoding programs of higher complexity

and expands the range of problems that can be solved with

evolutionary computing.

GEP consists of two principal components: the genes

(genotype) and the expression trees (the phenotype). The

information decoding from chromosomes to expression trees

is called translation. The genome or chromosome consists

of a linear, symbolic string of fixed length composed of

one or more genes. Each gene is structurally divided into

two sections: a head and a tail. There are two types of

codons that make up a gene: ones that designate computer

functions and terminals which operate as placeholders for

static variables or arguments to the functions. The head of

a gene contains symbols representing both functions and

terminals with the start codon always holding a function

while the tail is entirely made up of terminals. This struc-

ture and the particular rules of translation in GEP ensure

that each gene encodes a valid computer program. Despite

the fixed length of the genome, each gene has the potential

to encode for expression trees of different levels of com-

plexity and nesting. The translation from genotype to phe-

notype follows a simple, breadth-first recursive principle:

as the codons of a gene are traversed, for each function

encountered, the algorithm reserves a number of following

unreserved codons as arguments to that function regardless

whether they are functions or terminals. The number of

codons reserved depends on the number of arguments the

function encountered requires. In order to illustrate this

process, encoding of a simple phase modulation graph is

shown in Figure 1. Such a gene would have to consists of

a head section with at least 3 codons and tail with at least

6. The first 3 positions in the head of this gene contain

the two sine oscillator functions and a terminal in between

(the head part of the gene is indicated by a shaded grey

background). The tail is entirely made up of terminals.

In the Karva notation[10] this chromosome is represented

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1390 -

Figure 1. Encoding a phase modulation instrument as a

single-gene sequence

as a string of upper and lower case letters with position ref-

erence numbers above:

0123456789012
OaObcdefgacdb

The expression tree that emerges form this gene after the

translation process is shown in Figure 2.

Figure 2. Decoded expression tree of phase modulation as

a graph of sine oscillators. Sine oscillators are designated

by captial O and terminals by lower case letters

The first codon designating a SinOsc ar method (repre-

sented here by symbol O) - which in SuperCollider lan-

guage specification expects four arguments: frequency, phase,

mul and add - is translated as the root node in the ex-

pression tree with four branches deriving their values from

codons in positions 1 to 4 in the chromosome string as

they get reserved according to number of arguments into

the function. When the algorithm encounters a terminal,

there is no need to reserve anything and the terminal is as-

signed its position in the tree with no further branching,

however, when it comes across another function at posi-

tion 2 in the head of the gene, it looks ahead to reserve the

next sequence of codons, in this case four arguments are

expected again, therefore terminals at positions 5 to 8 fill

these nodes. Once the algorithm has filled all the function

arguments, the process stops and the rest of the terminals

in the tail section of the gene are ignored. This mechanism

allows to define the potential complexity and nesting in the

resulting computer programs as a function of overall gene

length. The expression tree above translates into a corre-

sponding SuperCollider unit generator graph function:

{arg a, b, c , d, e , f , g;

SinOsc.ar (a , SinOsc.ar (d, e , f , g) , b, c)

}

The size of the gene tail t is calculated based on the size

of the head h and the number of terminals n required by the

function with the largest number of arguments.

t = h(n− 1) + 1

Another feature that sets GEP apart from other evolu-

tionary algorithms is the use of multigenic chromosomes.

Multigenic chromosomes can be combined together by a

function that serves as a linker. In order to provide an

example of a multigenic chromosome, let us consider a

slightly more complex example than the phase modulation

graph above. This time there are four unit generators in-

volved: sine oscillator SinOsc (O), sawtooth wave oscil-

lator LFSaw (S), random values oscillator with quadratic

interpolation LFNoise2 (N) and band-limited pulse wave

generator Pulse (P). Since the generator with largest num-

ber of arguments is the sine tone oscillator and the head

size remains the same for the time being, the gene size is

also the same as above, but this time the chromosome con-

sists of two genes which are linked together by mathemat-

ical multiplication function in the translation process.

The gene expression tree of this chromosome consists of

two independent sub expression trees corresponding to the

multigenic structure: the first one has a noise generator as

the root codon and the second one a sawtooth oscillator.

There is an additional linker function, in this case multi-

plication, which combines the genes together into a single

composite function, as shown in Figure 3

*

N S

O O g D f d a

a d c c d h e c h f b

Figure 3. Expression tree of a multigenic chromosome

with multiplication function serving as a linker.

This expression tree translates to a unit generator graph

function in SuperCollider:

{arg a,b,c ,d,e , f ,g,h; LFNoise2.ar(SinOsc.ar (a ,d,

c ,c) ,SinOsc.ar (d,h,e ,c) ,g) ∗ LFSaw.ar(

Pulse . ar (h, f , b) , f , d, a)

}

GEP chromosomes contain several genes each coding for

structurally and functionally unique expression trees. De-

pending on the problem to be solved, these sub-trees may

be selected individually according to their respective fit-

ness or they may form a more complex multi-subunit ex-

pression tree and be selected according to the fitness of

the whole chromosome. The linker between the individ-

ual expression trees can also be any function and depends

on the context of the task at hand. For example, in the

above structure, the multiplication could be substituted by

addition to produce additive synthesis instead of modula-

tion synthesis or any other function that requires two argu-

ments.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1391 -

4. THE SELECTION PROCESS

The gene expression process does not differ much from

that of the classic genetic algorithms. It begins with the

random generation of chromosomes of a certain number

of individuals for the initial population. In the next step,

these chromosomes are translated into computer functions

to be executed and the fitness of each individual is assessed

against a set of desired examples which act as the environ-

ment to which the individuals are to be adapted. The in-

dividuals are then selected according to their fitness (their

performance in that particular environment) to reproduce

with modification, leaving progeny with new traits. These

new individuals are, in their turn, subjected to the same

developmental process: expression of the genomes, con-

frontation of the selection environment, selection, and re-

production with modification. The process is repeated for

a certain number of generations or until a good solution

has been found.

The initial population in gene expression programming is

created in the same way as in other evolutionary compu-

tation algorithms either by randomly populating the gene

codons with functions and terminals determined to be part

of the solution space or using pre-existing individuals from

a pool of previous successful runs. In case of random gen-

eration of the population, which is by far the most common

method used, the genes are constructed, first, by randomly

selecting a root node from the included function defini-

tions, then the head codons are filled by randomly selecting

a function or a terminal for each position and, finally, the

tail only includes random selections of terminal values. Al-

though, it is not absolutely necessary to define a root node

as a function according to GEP principles, especially in

multigenic chromosomes, however it proves more crucial

of a factor in the special case of sound synthesis. Sound

synthesis is a special case for more than one reason and

the many constraints that it imposes on the GEP paradigm

will be discussed in detail in the following sections.

As in any other evolutionary programming model, the

most important and challenging component in GEP is the

design of the fitness cases as this is what drives the fitness

of the population and ultimately decides the success of the

problem solving algorithm. In most cases which are try-

ing to find the single best solution to a particular problem,

the goal must be defined clearly and precisely in order for

the system to evolve in the intended direction. Although

it may not always be the case, particularly while evolving

candidate solutions for complex, open-ended situations in-

cluding sound synthesis or musical phrase composition, a

poorly designed fitness function tends to produce random

meaningless results and either converges on an inappro-

priate solution or will not converge at all producing con-

sistently large error values in individuals with the highest

fitness.

The selection process commences once each individual

in the population has been assigned a fitness value. The

purpose of this phase of the algorithm is to propagate the

fittest solutions to the following generation. Again, there

are a number of different methods by which to select the in-

dividuals, stochastic and deterministic, however in the long

run it makes little difference which one is used as long as

the best traits of the current population are preserved in the

new population. The preferred method in GEP is stochas-

tic, which entails assigning each chromosome in the popu-

lation a probability weight value proportional to its relative

fitness. This may mean that the fittest individual may not

always survive the selection process while mediocre indi-

viduals might be selected.

5. GENETIC OPERATORS

The selection process has a tendency to converge towards

a single high scoring solution and, without genetic opera-

tors, would rapidly get stuck in a local optimum. There-

fore it is essential to maintain genetic diversity, which is

mainly achieved by several modifications introduced dur-

ing the replication process of the genomes. There are a va-

riety of genetic operators in GEP divided into three main

categories: mutation, transposition, recombination.

Mutation entails modifying a single value in a randomly

chosen position and can occur anywhere in the chromo-

some. However, the structural organization of the chro-

mosome must be preserved to ensure that when expressed

the individual still produces a valid program. This means

that the root can only be replaced by another function, any

codon in the head section of the chromosome can be sub-

stituted by a function or a terminal and only terminals are

allowed as replacements in the tail section. Mutations of a

single codon can have a dramatic effect on the phenotype

a chromosome is encoding, especially if it occurs in the

head section. The following Karva notation strings display

a mutated chromosome before and after the mutation, in

which a terminal that occurs in position 1 in the original

gene has mutated into a sine oscillator in the next genera-

tion:

0123456789012

NcOgadccdhecc

0123456789012

NOOgadccdhecc

Figure 4 shows the effect on corresponding expression

trees of this single-point mutation.

(a) (b)

N

c O g

a d c c

N

O O g

a d c c d h e c

Figure 4. Single-point mutation. A terminal in (a) changes

into a sine oscillator function in (b)

Mutation rate is defined as a global constant in the GEP

algorithm and can be specified as a probability percentage

which each chromosome is subjected to. If the mutation

rate is defined as 0.1, it means each chromosome has a 10%

chance of being subject to a random one-point mutation.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1392 -

The transposition operations in GES copy short fragments

of the genome from their original locations to another loca-

tion in the chromosome. For example the already familiar

gene from two previous examples is subjected to transpo-

sition of a short codon sequence shown in Karva notation

and Figure 5. The terminals at locations 5 and 6 are copied

into the head section of the gene, which results in the first

two parameters - frequency and phase in this case - of the

root codon sawtooth oscillator of the first gene to be re-

placed by a noise generator and a terminal instead of a sine

oscillator and a noise generator.

0123456789012345678901234567890123

SONOdefadjfahffbaNNhObddjceedaebcd

0123456789012345678901234567890123

SNhOdefadjfahffbaNNhObddjceedaebcd

*

S N

O N O d

e f a d i f a a h f f

N h O

b d d i c e e

(a) original

*

S N

N h O d

e f a d i f a

N h O

b d d i c e e

(b) transposed

Figure 5. Transposition of a codon sequence

The SuperCollider synthesis function that is derived from

the transposed tree is shown in the code listing below:

SynthDef(’r00 g02 s001’ , {arg a,b,c ,d,e , f ,g,h, i ;

Out.ar (0,

(LFSaw.ar(SinOsc.ar(e , f ,a ,d) ,

LFNoise2.ar(i , f ,a) , SinOsc.ar (a ,h, f , f) ,d))∗

(LFNoise2.ar(LFNoise2.ar(b,d,d) ,h,

SinOsc.ar (i ,c ,e ,e)))

)

})

Recombination involves choosing chromosomes from the

pool of individuals that have successfully passed the selec-

tion process and exchanging their genetic material. This

process results in creation of two new individuals. A de-

fined number of points are randomly chosen along the two

parents and their codons are copied to the child chromo-

somes as mixed set containing codons from each of the

parents. In order to illustrate the basic principles and ef-

fects of recombination let us consider two chromosomes

derived from the same four unit generators presented previ-

ously. The listings below display two parent chromosomes

in Karva notation (head sections in bold):

0123456789012345678901234567890123

SONOdefadifahffbaNNhObddiceedaebcd

0123456789012345678901234567890123

PPNSahihgifbbcdafOePNhaadhgbhhgdee

After subjecting these chromosomes to recombination,

the result is two new individuals that have characteristics of

each of the parents. In the symbol strings below, the com-

ponents that made up the original chromosome 1 are indi-

cated in bold to illustrate the effect of recombination. The

first of the two randomly selected recombination points is

located at position 3 of the chromosome and the second

occurred at position 27 located in the head section of the

second gene.

0123456789012345678901234567890123

SONSahihgifbbcdafOehObddiceedaebcd

0123456789012345678901234567890123

PPNOdefadifahffbaNNPNhaadhgbhhgdee

The corresponding expression trees of the two parents

and their progeny is shown in Figure 6

*

S N

O N O d

e f a d i f a h f f b

N h O

b d d i c e e

(a) parent A

*

P O

P N S a

h i h g i f a h f f a

e P N h

b d d h g b h

(b) parent B

*

S O

O N S a

h i h g i f b b c d a

e h O b

d d i c

(c) child A

*

P N

P N O d

e f a d i f a h f f b

N P N

h a a d h g b h h g

(d) child B

Figure 6. Recombination

These are relatively simple examples in order to demon-

strate the principles of genetic operations in gene expres-

sion synthesis. The synthesis functions that have been evolved

so far using this technique typically originate from chro-

mosomes consisting of at least 4 up to 8 genes and head

sizes ranging between 8 to 16, resulting in much more

complex graphs with more levels of nesting. While the ge-

netic operations ensure variability within the population,

evolution towards a goal is largely determined by a fitness

function.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1393 -

6. EVOLVING UNIT GENERATOR GRAPHS

The algorithm works in a cyclical pattern, first an initial

population of n individuals is generated, then each indi-

vidual is expressed as a recursive expression tree begin-

ning with the root node which can then be translated into

a sound synthesis function string. The function string is

evaluated and a synthesis process is started on the server.

An analyzer agent then assigns a fitness value to each in-

dividual. The selection process is stochastic and associates

a probability weight to each individual based on their rel-

ative fitness. Replicated individuals are then subjected to

a series of genetic operations depending on the settings of

the algorithm. Once every new individual has been ex-

posed to the genetic operator phase, the cycle is completed

by replacing the original population with the new individu-

als which then are ready for the subsequent repeat of these

steps.

In order to begin the process of evolving unit generator

graph functions for sound synthesis, there are two crucial

components to be defined: (1) the specification of termi-

nals as synthesis function arguments and (2) the design of

the fitness function so that the evolution proceeds towards

desired goals with minimal human supervision. The spec-

ification of terminals was solved by introducing a paral-

lel population of calculation functions in which each in-

dividual becomes expressed as a list of floating point val-

ues. This parallel population is evaluated simultaneously

with the sound generating functions and each individual

receives the same score as its counterpart in the sound gen-

erating population. However, the selection process and the

genetic operators are applied separately so the population

retains a certain degree of independence. The number of

genes in this parallel population corresponds to the num-

ber of terminals necessary to fill all the parameters. The

functions used in this population are not sound generating

functions, but binary arithmetic operators of addition, sub-

traction, multiplication, and division and the terminals are

static floating point values. This solution imitates the phe-

nomenon of co-evolution in the natural world where two

interdependent species indirectly cause mutual evolution-

ary changes across the confines of their genotypes.

7. DEFINING THE FITNESS FUNCTION

The fitness function uses machine listening algorithms to

analyze the candidate solutions once they have passed an

initial basic compilation test on the SuperCollider server.

Before the machine analysis can commence, any individual

that fails the basic fitness check and the expressed function

fails to compile, is automatically assigned a weight value

of 0 and consequently excluded from the selection process.

Compilation may fail for any number of reasons, the most

common being invalid input type and since initialization

is completely random, unsuitable function arguments be-

come quite frequent in case unit generators that have argu-

ments of specific type. A good example of an invalid unit

generator argument would be in case of a filter algorithm

which expects the first argument to be a signal of the same

rate (typically audio rate in this case) as it is running it-

self, therefore a floating point number is not accepted and

compilation fails. There is an option to start the process

by filling the initial population exclusively with candidate

solutions that pass this check.

The machine listening process analyses a set of mel fre-

quency cepstral coefficients (MFCC), spectral flatness, spec-

tral centroid, and amplitude measures into running mean

and standard deviation values over a desired duration, 3

to 8 seconds in the runs reported in this account. Invalid

output from any of the analysis processes (mostly NaN or

unrepresentable value as a result of a calculation, divid-

ing 0 by 0 for example) is assigned an error value greater

than one which gets treated the same way as uncompil-

able functions and is thereby excluded from the selection

process. The fitness function that was used in all the vari-

ants of the gene expression experiments under investiga-

tion in this case used example analysis sets extracted from

sound examples towards which the algorithm was expected

to converge. The score of each individual was determined

as the difference between maximum possible score and the

total actual error in each of the analysis categories. The

mean and standard deviation statistics of each of the MFC

coefficients were given double weighting relative to other

statistical values and the maximum error in each of the sta-

tistical categories was set to 1.0. Spectral centroid values,

which are expressed in frequency values, were mapped to

range between 0.0 and 1.0. This meant a maximum indi-

vidual score of 10.0 as the sum of scores from MFC co-

efficients adding up to 2.0 for both mean and standard de-

viation statistics, and to 1.0 for spectral flatness, spectral

centroid, and amplitude.

In order to imitate the condition of limited resources of

natural selection, each candidate solution is assigned a CPU

usage value measured during the execution of the synthe-

sizer. At the end of each evaluation cycle, the CPU us-

age percentage is normalized relative to the minimum and

maximum values of the population and the scores recal-

culated adding in the CPU percentage as 10 percent of the

total score. This pressure introduces a tendency in the pop-

ulation of favoring simpler synthesizer graphs over more

complex ones. To counteract this tendency a conflicting

fitness pressure is introduced to encourage structural com-

plexity. Maximum depth of unit generator nesting is a

straightforward indicator of complexity in graphs, so the

scores are adjusted according to the maximum depth of a

chromosome relative to the maximum of the population.

This way, the complexity can be maintained in popula-

tions, while still encouraging resource usage effectiveness.

These parameters can be adjusted depending on the pur-

pose of the experiment.

8. DISCUSSION

The most striking feature of the implemented synthesis

system that emerged during the experiments is perhaps the

phenomenon of high fitness scores being present starting

from the initial randomly generated population. The max-

imum score remained fluctuating within a limited range at

the top of the fitness landscape and did not seem to im-

prove. This reveals the crucial characteristics of the algo-

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1394 -

rithm and informs of inherent properties and constraints

of sound generating functions going forward. One of the

factors for this outcome is the additional server compila-

tion check applied prior to exposing the functions to the

statistical fitness evaluation procedures. This is an addi-

tional layer, which in standard framework of GEP problem

solving would seem redundant, but has been devised to ac-

commodate for the specific language-server architecture of

the SuperCollider environment, which is essentially com-

prised of 2 different computer languages. Another charac-

teristic that emerged from these experiments was the ex-

plosion of variety combined with rapidly improving mean

fitness of the entire population after 2-5 generations, which

produced the most interesting synthesis functions in large

variety compared to later generations. The variety tends to

diminish after a number of generations similar to classic

GA-s as strands of highest fitness individuals take over the

population. Furthermore, evolving sound-generating func-

tions imposes rather strict constraints on the algorithm, which

in these experiments were largely ignored as much as pos-

sible. For example, the co-evolution of parameters to the

functions from a set of random calculations exposed the

audio system to unexpected output values which were weeded

out by the statistical analysis of amplitude tracking and

bad value checks. Further normalizers and limiters were

employed to try and keep the synthesis output within a

perceivable (and tolerable) range. The persistence of rela-

tively high but static maximum scores also underlines the

limitations of the statistical fitness functions used in the

experiments. The mean and standard deviation statistics of

the example sounds do not provide sufficient time-domain

information, therefore, there was always a significant vari-

ety of functions with differing spectral and temporal char-

acteristics attaining high scores. The main limitation to

the sonic output is the selection of unit generators, which

were naturally not expected to conjure up complex spec-

tra of the human voice or traditional musical instruments.

The fitness statistics were intended rather as rough guides

to acceptable ranges of spectral characteristics of the can-

didate solutions and near exact matches were understood

to be virtually impossible from the outset even in the case

of GEP evolved synthesis experiment. In total, over 3000

new synthesis definitions have been selected as additions

to the GES database as of this publication. These syn-

thesis definitions are stored together with their statistical

analysis data and linearly encoded chromosomes to be uti-

lized in the interactive autonomous mikro improvisation

system, live coding improvisation performances, and as

genetic source material for further experiments in GES.

9. CONCLUSIONS

The claims of gene expression synthesis being superior to

its predecessors[1] appear to be corroborated based on the

speed of population mean fitness increase and high maxi-

mum scores starting with initial populations. These initial

experiments have provided a rich insight into the myriad of

sound synthesis possibilities latent in the GES algorithm.

Based on these experiments and taking aboard the method-

ology explored in previous evolutionary programming at-

tempts with SuperCollider, the algorithm can be expanded

to include range limitations for unit generator parameters

to safeguard against unreasonable output values. Special

classes of unit generators - such as filters, buffer players,

reverberation and spatialization functions can only be in-

corporated by providing structural constraints in the design

of the chromosome, but would significantly increase the

complexity of the potential sonic output. Further, the pa-

rameter definition could be optimized more efficiently.

Acknowledgments

This research was partly funded by the University of Hull

80th Anniversary PhD Scholarship.

10. REFERENCES

[1] C. Ferreira, “Gene expression programming: a new

adaptive algorithm for solving problems,” Complex

Systems, vol. 13, 2001.

[2] C. Magnus, “Evolving electroacoustic music: the ap-

plication of genetic algorithms to time-domain wave-

forms,” in Proceedings of the 2004 International Com-

puter Music Conference, 2004.

[3] R. A. Garcia, “Automating the design of sound synthe-

sis techniques using evolutionary methods,” 2001.

[4] J. Biles, “Genjam: A genetic algorithm for generating

jazz solos,” in Proceedings of the 1994 International

Computer Music Conference, 1994.

[5] G. L. Nelson, “Sonomorphs: An application of genetic

algorithms to the growth and development of musical

organisms,” in Proceedings of the Fourth Biennial Art

& Technology Symposium, vol. 155, 1993.

[6] J. McCormack, “Eden: An evolutionary sonic ecosys-

tem,” in Advances in Artificial Life, 6th European Con-

ference, ECAL 2001, Prague, Czech Republic, Septem-

ber 10-14, 2001, Proceedings, 2001, pp. 133–142.

[7] D. Stowell, “Supercollider code written by Dan Stow-

ell,” http://www.mcld.co.uk/supercollider/, accessed:

2012-08-27.

[8] F. Olofsson, “Work with Mark: Genetics. (a

blog post.),” http://www.fredrikolofsson.com/f0blog/

?q=node/144, accessed: 2012-08-27.

[9] C. Ferreira, Gene Expression Programming: Math-

ematical Modeling by an Artificial Intelligence, ser.

Studies in Computational Intelligence. Springer,

2006, vol. 21.

[10] ——, “Karva notation and k-expressions. from gep

tutorials: A gepsoft web resource.” http://www.

gene-expression-programming.com/tutorial002.htm.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1395 -

http://www.mcld.co.uk/supercollider/
http://www.fredrikolofsson.com/f0blog/?q=node/144
http://www.fredrikolofsson.com/f0blog/?q=node/144
http://www.gene-expression-programming.com/tutorial002.htm
http://www.gene-expression-programming.com/tutorial002.htm

