
Takt: A read-eval-play-loop interpreter for a structural/procedural
score language

Satoshi Nishimura

University of Aizu

nisim@u-aizu.ac.jp

ABSTRACT

A new language for describing musical scores as well as

its interpreter is developed. The language allows a concise

description of note and chord sequences, and at the same

time, it provides rich programming functionalities with C-

like syntax, which are useful for algorithmic composition.

Representing structures in music such as repetitive occur-

rences of a common phrase or its variation is supported

with macros and phrase transformation modules. The in-

terpreter enables us to execute its program code interac-

tively with a read-eval-play loop. The interpreter can also

be used for the real-time processing of MIDI events com-

ing from input devices. The language is extensible in that

C functions can be called from its program code.

1. INTRODUCTION

Composers often use instruments during composition for

examining their ideas including phrases, algorithmic rules,

or a combination of the both. A problem in such a process

is that some compositions are hard or rather impossible to

be played manually. Music educators may also face this

problem for demonstrating algorithmic pieces of music to

students.

One of the efficient solutions to the above problem is to

provide a shell-like interactive environment based on a mu-

sic language. With such a tool, users can repeatedly try a

different idea and examine its resulting sound instantly. In

the field of general-purpose languages, this type of a com-

mand interpreter is called a read-eval-print loop (REPL);

however, it should better be called a read-eval-play loop in

our context.

To make such a REPL environment comfortable, the lan-

guage should be designed so that frequently-used com-

mand patterns are simple and easily-typeable. For exam-

ple, it is desirable that a sequence of notes can be played

just by typing their pitch names like ‘c d e’ in the com-

mand line. It is also demanded that algorithmic descrip-

tions can be easily mixed with such direct descriptions; in

particular, the use of delimiter symbols to switch between

direct and algorithmic descriptions is discouraged.

So far, numerous score description languages have been

Copyright: c©2014 Satoshi Nishimura. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

proposed [1, 2, 3, 4, 5, 6, 7]; however, to the best knowl-

edge of the author, no languages are satisfactory for the

aforementioned purpose. Some of the languages (e.g., [4,

5]) are constructed by extending existing general-purpose

languages while others are not. The formers may have

an advantage that existing resources developed in the base

languages can be utilized. However, it is difficult to allow

that a bare sequence of pitch names constitutes a complete

program for playing notes. For example, if the base lan-

guage is LISP, we need at least parentheses like ‘(c d e)’

(here ‘c’ is a function).

There are many score languages designed with the latter

approach (i.e., designed from scratch). Some of them are

shown in Figure 1. Nevertheless, such languages to date

do not provide sufficient features for algorithmic composi-

tion per se. Although embedding another general-purpose

language into such a language might be a solution (for

example, Lilypond [6] allows embedding Scheme in its

code), such an approach will require additional delimiters

for switching between two languages. As a result, a combi-

nation of note-by-note and algorithmic descriptions tends

to be complicated.

This paper proposes a new language named Takt which

provides a simple top-level description of note and chord

sequences yet integrates rich programming functionalities

for algorithmic composition per se. The language is orig-

inated from the author’s previous work [8]; however, its

syntax is thoroughly re-designed. By a newly-developed

interpreter, called a Takt interpreter, the language is trans-

lated into a stream of MIDI events in real time. The lan-

guage resembles other C-like languages and thus enables

smooth migration for their users. The language is extensi-

ble in that C functions can be called from its source code,

by which utilizing existing libraries written in C/C++ is

possible.

This paper is organized as follows. In Section 2, the pro-

posed language is explained. Section 3 describes the devel-

oped interpreter together with its performance evaluation.

Section 4 discusses other music programming tools related

to this work. Section 5 concludes this paper.

2. THE LANGUAGE

This section first introduces a core language for describ-

ing note/chord sequences and later explains how the actual

language extends the skeletal language.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1736 -

mailto:nisim@u-aizu.ac.jp
http://creativecommons.org/licenses/by/3.0/

������� �� �����
SCORE [1]

P2 RHY/-16/16 X 7/8 X 4;
P3 NOTES/R/C4/D/E/F/D/E/C/G/C5/B4/C5;

DARMS (The Note-Processor Dialect) [3]
RS -1 0 1 2 0 1 -1 3E 6 5 6

MML [3]
L16RCDEFDECL8G>CC

ABC [7]
L:1/8
R z/C/D/E/ F/D/E/C/ GcBc

Lilypond [6]
r16 c’ d’ e’ f’ d’ e’ c’ g’8 c’’ b’ c’’

Takt
{r c d e f d e c}\\ {g ^c b ^c}\

or
l16 r c d e f d e c g~ ^c~ b~ ^c~

Figure 1. Comparison of Score Description Languages.

2.1 The Core Language

The syntax of the core language with a start symbol s is as

follows:

Score: s ::= ε | s p | s x = e
Phrase: p ::= c | {s} | [s] | p m | p|f | p @ p
Expression: e ::= n | x | e + e | e * e | . . .
Pitch: c ::= c | c# | d | . . . | ^c | . . . | r
Modifier: m ::= * | \ | ~ | . . .
Transformation: f ::= Transpose(e) | Inverse(e) |

Retrograde() | . . .

where n and x represent a constant and a variable, respec-

tively. Figure 2 shows an example of music written in this

language.

The whole score is composed of phrases and assignments.

Each phrase corresponds to a fragment of music. Such a

phrase consists of a note, a braced block, or a bracketed

block, optionally followed by phrase-modifying notations.

Each note is represented by a user-definable pitch name,

which is by default an English pitch name. The attributes

of the note such as length (aka note value) or velocity (aka

dynamics) are obtained from the current context, which is

a map from a set of variables to their values. Using the

assignment x = e, the value of x in the context is set to the

value of the expression e.

The braces ‘{’ and ‘}’ create a new copy of the current

context and execute the score therein with the new context.

Then, the context is resumed to the original one. For ex-

ample, ‘v=80 c {v=90 d e} f’ will play a C note with

velocity 80, D and E notes with velocity 90, and then an F

note again with velocity 80. The brackets ‘[’ and ‘]’ also

save and restore contexts, and in addition, they perform

phrases therein in parallel. They are used for representing

chords or polyphony.

When a phrase is accompanied with a modifier such as

[

{ /* the first voice */

{ r c d e f d e c }\\ {g ^c b ^c}\

{ ^d g a b ^c a b g }\\ {^d ^g ^f ^g}\
...

{ ^c bb a g f a g bb }\\

{a b ^c e d ^c f b}\\

[e g ^c]**

}

{ /* the second voice */

o=3

r* {r c d e f d e c}\\

{g _g}\ r {r g a b ^c a b g}\\
...

{e c d e {f d e f}\ g _g}\

[_c c]**

}

]

Figure 2. The beginning and ending parts of the J. S. Bach

two-part invention BWV 772 written in the core language.

Each note or rest is represented by an alphabetical letter. The ’*’
and ’\’ signs specify note length. The ’^’ and ’_’ signs adjust
octaves. The ’o=3’ assignment lowers the default octave.

‘*’, the context for the phrase is temporarily modified. For

example, the ‘*’ modifier doubles the length attribute of

notes, while the ‘\’ modifier halves it. Hence, ‘c\\’ rep-

resents a sixteenth note with the C pitch, since the default

length is a quarter note. The ‘~’ modifier adds two lengths

like a tie.

A phrase can be transformed with programmable rules.

For example, the ‘Transpose(e)’ transformation adds the

value of e to the pitch (in semitones) of each note. 1 The

‘p|f ’ syntax applies the transformation f to the phrase

p. The currently available pre-defined transformations are

listed in Figure 3.

The ‘p @ p’ syntax provides a special form of transforma-

tion that applies the rhythmic structures as well as velocity

fluctuations in the second phrase to the first phrase. 2 For

example, ‘{e f g a}@{c* c\}’ is equivalent to ‘{e* f\

g* a\}’. This feature is useful when one wants to share

rhythmic structures or expressive controls across phrases

with different pitches.

2.2 The Actual Language

In addition to the functions of the core language, the actual

language includes the following features.

2.2.1 Programming Features

Most functionalities found in other general-purpose inter-

pretive languages like Perl [10] are also provided in Takt.

They include loops, conditional constructs, arithmetic/logical

1 Transformation is also found in early notation languages like
SCORE [1], although SCORE’s transformation was not programmable.

2 Similar notion has been proposed as the slap structure [9] in the field
of musical knowledge representation.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1737 -

Transpose Chromatic or diatonic transposition

Invert Chromatic or diatonic pitch inversion

ConvertScale Pitch mapping between two scales

Retrograde Retrograde (playing backwards)

TimeStretch Time scaling

AddNotes Adding new note(s) for each note

(for octaving or harmonizing)

Modify Event modification using assignments

SelectIf Event selection with conditions

Clip Time-range cutting

Swing Simple time deformation

Quantize Time quantization

Arp Arpeggio effect

ModifyChords Modifying each note of chords using

assignments

Grace Adding grace note(s) for each note

Roll Drum-rolling effect

Trill Trill effect

Tremolo Tremolo effect

Figure 3. List of available transformations.

operators, classes, macros and high-order functions. Sup-

ported data types include integers, floating-point numbers,

rational numbers, arrays, strings, and associative lists (aka

hashes). The language syntax is designed so that statement

separators or terminators (like the semicolons in the C lan-

guage), which often bring confusion for beginners, are not

required.

In the actual language, statements for programming and

the phrases in the core language are comparable syntax ele-

ments, and therefore, programming constructs can be arbi-

trarily mixed with the musical descriptions. For example,

the for statement of the language can be used for repeating

a phrase as follows:

for(i,1,4) { c e g }

Meanwhile, the same syntax can be used in numeric pro-

gramming like the following:

var sqrsum = 0

for(i,1,10) { sqrsum += i * i }

Thus, the language avoids redundant learning efforts.

2.2.2 Macros

It is possible to define a phrase as a macro and reuse it later.

For example, the following example defines the phrase as

a macro named ‘x’.

var x = {c d e c e f g*}

Once a macro is defined, it can be invoked simply by plac-

ing its name. For example, a two-voice canon can be de-

scribed as

[x {r** x}]

where ‘r**’ represents a whole rest. Moreover,

[x {r** x}|Transpose(6)]

var p1 = {c d e f d e c}\\

[

{ /* the first voice */

r\\ p1 {g ^c b ^c}\

^d\\ p1|Transpose(7) {^d ^g ^f ^g}\
...

^c\\

p1|Invert(c,Scale.major(c))|Transpose(10)

{a b ^c e d ^c f b}\\

[e g ^c]**

}

{ /* the second voice */

o=3

r* r\\ p1

{g _g}\ r r\\ p1|Transpose(7)
...

{e c d e {f d e f}\ g _g}\

[_c c]**

}

]

Figure 4. Another description of the invention written in

the actual language.

will construct a polytonal canon by using the transforma-

tion. Figure 4 shows how macros and transformations can

be used for representing the structure of music.

Macros in Takt are treated as objects just like functional

languages considering functions as first-class objects. For

example, they can be stored into an array as below.

var phrases = %[{c d e c}, {e f g e},

{d e f d}]

The ‘%[’ and ‘]’ signs construct an array. The macros

stored in the array can, for example, be picked randomly

and invoked as follows:

phrases[irand(0,2)]

2.2.3 Functions

Takt provides named and unnamed functions that are treated

as objects. The body of such functions can be described ei-

ther in Takt or in an external language like C++.

Functions in Takt can be used for defining not only com-

puting tasks but also parametric musical phrases. For ex-

ample, the following function defines a simple accompani-

ment pattern.

def waltz(p1:quote, p2:quote) {

p1 p2 p2

}

After this definition, ‘waltz(c, [e g])’ will be equiv-

alent to ‘c [e g] [e g]’ (the ‘quote’ directive makes

each argument received as a macro object).

2.2.4 Repetition

In addition to loop constructs such as for and while, a

handy way for repetition is provided. When a phrase is

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1738 -

def Transpose(semitones:number) {

return %{

class = Effector,

def eventAction(ev:Event) {

ev.n += semitones

put(ev)

}

}

}

Figure 5. Example of user-defined transformation.

followed by ‘@’ with an integer i, the phrase is repeated i

times (e.g., ‘c@4’). Infinite loops are indicated by ‘@@’; for

example, ‘{c d}@@’ indefinitely plays alternating C and D

notes.

2.2.5 Event Buffers

An event buffer is a data structure storing a list of time-

stamped events (e.g., note-on and note-off events) together

with playing duration. Event buffers are convenient for

manipulating phrases in a non-streaming way. An event

buffer containing the events generated by a phrase p is con-

structed by an expression formed ‘${p}’. Transformations

can be applied to event buffers by the ‘|’ operator; for ex-

ample,

var buf = ${c} | Transpose(2)

first creates an event buffer containing the events of the C

note and then transforms it into a new event buffer contain-

ing events of the D pitch, which is assigned to the variable

buf. The contents of an event buffer can be played just

like a macro (e.g., after the above assignment, ‘buf’ will

play the D note) or can be written to a standard MIDI file

by calling a library function.

2.2.6 User-Defined Transformation

The process of phrase transformation is user-programmable.

It is given by defining a function called for each input

event optionally with initialization and finalization func-

tions. Figure 5 shows an example of such definition for

transposition.

Transformations are categorized into streaming and non-

streaming types. In streaming transformation, input events

must be processed in chronological order, while the non-

streaming (aka buffered) type allows random access of in-

put events by using the event buffers discussed in Sec-

tion 2.2.5. Streaming transformation is more favorable be-

cause it can be applied to infinite phrases or event streams

from input devices. Nevertheless, some kinds of transfor-

mation such as retrograde (reverse play) can only be im-

plemented with the non-streaming type.

Streaming transformations are further classified into two

categories: non-rewinding or rewinding. Non-rewinding

transformations (also called causal transformations) never

decrease the time-stamp values of events. Transformations

like pitch conversion belong to this category. On the other

lexical
analyzer

MIDI
output

tokens

events

expression
stack

parser

device
input
manager

output
manager

MIDI
input

interpreter thread

output thread

input thread

command
reader

command
strings

console thread

events

interpreter
body

console

fiber queue

Figure 6. Structure of the interpreter.

hand, rewinding transformations possibly decrease the time-

stamp values of events to some extent. They are useful,

for example, for implementing time-quantizing transfor-

mation. Rewinding transformations can still be applied to

infinite phrases; however, when they are used to a real-time

event stream from an input device, the reduction of the time

stamps becomes invalid.

3. THE INTERPRETER

The developed interpreter operates either in REPL mode

or source-file mode. MIDI events generated by the inter-

preter are transmitted to MIDI output devices or stored to

MIDI files. It is written in the C++ language and its current

version consists of approximately 20,000 lines. Currently,

the interpreter runs under Windows, Mac OS X, and Linux

platforms; furthermore, porting to other platforms should

be straightforward as long as the pthread thread library

working with a timer with sufficient resolution is available.

3.1 Organization

Figure 6 illustrates the structure of the interpreter. The

command reader receives program code from the console

and passes them to the lexical analyzer, in which they are

converted to tokens. The parser analyzes the syntax of the

token stream and evaluates expressions and statements in

it. When the parser encounters an invocation of a macro,

it expands the macro by pushing its definition (a list of to-

kens) back to the lexical analyzer. The interpreter body,

maintaining contexts and function-calling stack frames, gen-

erates events in response to requests from the parser. The

output manager stores those events in a priority queue and

sends them to the MIDI output devices according to their

time-stamp values. The device input manager buffers events

from the MIDI input device.

To handle macros as first-class objects, the Takt inter-

preter does not use an internal intermediate language which

many language interpreters employ for improving their speed.

In order to overcome the performance penalty due to that,

and also, to implement fibers described in the next section,

the parser is hard-coded without using parser generators.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1739 -

The interpreter uses four operating-system threads. The

command reader is executed in the original thread when

the interpreter process is started. The lexical analyzer, the

parser, and the interpreter body are run in a separate thread

for allowing the background execution of input program

code. The device input and output managers also use sep-

arate threads for improving the time accuracy of MIDI in-

put/output.

Garbage collection is one of the important issues in lan-

guage processing. To process events from the MIDI input

device without pauses in the interpreter thread, traditional

mark-and-sweep garbage collectors are not satisfactory. In

the Takt interpreter, the incremental garbage collection al-

gorithm proposed by Dijkstra et al. [11] is implemented.

3.2 Fibers and Scheduling

The concurrent execution of program code indicated by

the ‘[s]’ construct is realized using language-level fibers

(aka coroutines). Each fiber keeps its own parser state, ex-

pression stack, and function-calling stack. Fiber switch-

ing occurs only when the execution of the current fiber is

blocked, when a new fiber is created, or when such switch-

ing is explicitly indicated in the program code. The use of

fibers offers better efficiency and easier mutual exclusion

than using operating-system threads.

The scheduling of fibers is controlled by scheduling time

STi associated with each fiber (here, i represents a fiber

identifier). A priority queue of fibers is maintained in the

interpreter body, and when fibers are switched, a fiber hav-

ing the earliest scheduling time is picked for the candidate

for the next execution. The candidate fiber j is executed

immediately if STj ≤ GT where GT is the global time

based on the operating system clock or is blocked until the

condition is met otherwise. The time in the interpreter is

represented in ticks (480ths of a quarter note), and map-

ping between ticks and seconds is maintained in the output

manager.

When a transformation is applied to a phrase, a fiber is

created. In order to realize the rewinding transformation

described in Section 2.2.6, the fibers for the phrase and the

transformation process need to be executed in advance rel-

atively to other fibers. This “look-aheading” capability is

controlled by a per-fiber parameter ADi called aheadness,

which determines how the execution of fiber i should be

scheduled earlier than a base fiber βi.

The scheduling time STi is calculated as follows. The

interpreter constructs a weighted directed forest in which

each vertex corresponds to a fiber and each arc is (βi, i)
with its weight being ADi. Then, the weighted height ACi

of each vertex is calculated. The height is called cumula-

tive aheadness. Finally, the scheduling time is calculated

by

STi = LTi −ACi

where LTi is the local time of fiber i.

3.3 Performance

Although the speed of the interpreter may not be a pri-

mary concern of event-level (i.e., not signal-level) music

Takt Lilypond 2.18.2

Random note generation 7.4 sec. 9.4 sec.

Note generation based on

the Fibonacci numbers
6.8 sec. 3.7 sec.

Table 1. Comparison of the interpreter performance.

languages, it may have an impact on huge length music or

pieces using time-consuming algorithms.

Table 1 shows calculation time for simple benchmarking

programs, comparing with Lilypond [6] with its typeset-

ting capability disabled. The first benchmark generates a

MIDI file containing 100,000 notes with random pitches

on the C major scale. The second benchmark calculates

the first 30 Fibonacci numbers using the naive recursive al-

gorithm, maps them to note numbers on the C major scale,

and generates a MIDI file containing 30 notes. The Lily-

pond input files contain embedded Scheme code for imple-

menting such algorithms. All the programs were executed

on the Intel Core2 Q9550 2.83GHz processor under the

Windows Vista operating system.

As seen from the result, the Takt interpreter is faster in

simple note generation; however, it is 1.8 times slower in

the benchmark requiring intensive algorithmic calculation.

This is partly because the Takt language pursues maximum

flexibility with the power of macros, while Scheme better

concentrates on performance. The author believes that, in

event-level music applications, the superiority in descrip-

tion capability outweighs the performance penalty.

3.4 Supporting Tools

In addition to the interpreter, a translator from MIDI files

to Takt and a language-specific editor based on Emacs are

provided. The translator analyzes chords, polyphonic struc-

tures, and continuous parameter changes in the input MIDI

file and outputs equivalent Takt code, which can be edited

and converted back to a MIDI file by the interpreter. The

Emacs interface enables us to enter pitch names from a

MIDI keyboard and to play a described score with a feature

of a score-tracking cursor for indicating the current play-

ing position. The score-tracking cursor helps non-experts

to understand the Takt score description.

4. RELATED WORK

Interactive programming tools for algorithmic composition

or real-time MIDI processing have been developed over the

decades. Some of them are well matured and widely ac-

cepted as standard tools. They can be categorized into two

types: visual language based and textual language based.

Max [12], Pd [13] and OpenMusic [14] belong to the for-

mer category. In general, visual languages are easy to learn

and convenient for creating interactive control programs

using graphical components such as buttons and sliders.

However, developing large-scale programs in visual lan-

guages is generally considered to be difficult and that is

why textual languages are mainly used today for devel-

oping software applications as well as hardware systems.

As a remedy for this problem, each tool provides a way

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1740 -

for creating new graphical objects using an external tex-

tual language (for example, JavaScript in Max or LISP in

OpenMusic). However, those external languages are weak

in score description, and thus, they are not convenient for

defining phrases, transforming them, and organizing them

with an algorithmic flow.

SuperCollider [15] is a popular tool based on a textual

language. It mainly focuses on audio synthesis; however, it

also has capabilities for MIDI processing. The language is

a newly-designed one supporting object-oriented features

and coroutines. Nevertheless, it does not support note-by-

note description like ‘c d e’, and therefore, the seamless

fusion of note-by-note and algorithmic descriptions as pro-

vided in Takt is not possible.

5. CONCLUSION

This paper described an interactive command-line environ-

ment for composers, educators, and researchers. In the en-

vironment, note-by-note direct description and algorithmic

representation are unified in one language and therefore

the system is considered to be optimal for compositions

with the mixed use of non-algorithmic and algorithmic ap-

proaches. In future, I would like to extend this project to

support graphical interfaces such as a piano-roll editor for

event buffers. I would also like to investigate the possibil-

ities of applying this environment for other purposes such

as real-time control of robots or illumination.

6. REFERENCES

[1] L. Smith, “Score — A Musician’s Approach to Com-

puter Music,” Journal of Audio Engineering Society,

vol. 20, no. 1, pp. 7–14, 1972.

[2] C. Roads, The Computer Music Tutorial. Addison-

Wesley, 1996, ch. 17.

[3] E. Selfrideg-Field, Ed., Beyond MIDI. MIT Press,

1997.

[4] H. Taube, “Common Music: A Music Composition

Language in Common Lisp and CLOS,” Computer

Music Journal, vol. 15, no. 2, pp. 21–32, 1991.

[5] P. Hudak, T. Makucevich, S. Gadde, and B. Whong,

“Haskore Music Notation - An Algebra of Music,”

Journal of Functional Programming, vol. 6, pp. 465–

483, 1995.

[6] H.-W. Nienhuys and J. Nieuwenhuizen, “LilyPond, a

system for automated music engraving,” in Proceed-

ings of the XIV Colloquium on Musical Informatics,

2003.

[7] C. Walshaw, “ABC Music Notaion,” URL:

http://abcnotation.com/.

[8] S. Nishimura, “PMML: A Music Description Lan-

guage Supporting Algorithmic Representation of Mu-

sical Expression,” in Proc. of the 1998 International

Computer Music Conference, 1998, pp. 171–174.

[9] M. Balaban, “The Music Structures Approach to

Knowledge Representation for Music Processing,”

Computer Music Journal, vol. 20, no. 2, pp. 96–111,

1996.

[10] L. Wall and R. L. Schwartz, Programming Perl.

O’Reilly Media, 1991.

[11] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S.

Scholten, and E. F. M. Steffens, “On-the-Fly Garbage

Collection: An Exercise in Cooperation,” Communica-

tions of the ACM, vol. 21, no. 11, pp. 966–975, 1978.

[12] M. Puckette, “The Patcher,” in Proc. of the 1988 Inter-

national Computer Music Conference, 1988, pp. 420–

429.

[13] ——, “Pure Data,” in Proc. of the 1996 International

Computer Music Conference, 1996, pp. 269–272.

[14] G. Assayag, C. Rueda, M. Laurson, C. Agon, and

O. Delerue, “Computer-Assisted Composition at IR-

CAM: From PatchWork to OpenMusic,” Computer

Music Journal, vol. 23, no. 3, pp. 59–72, 1999.

[15] S. Wilson, D. Cottle, and N. Collins, Eds., The Super-

Collider Book. MIT Press, 2011.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1741 -

