Proceedings ICMC|SMC|2014

14-20 September 2014, Athens, Greece

An Agent Based Approach to Interaction and Composition

Stephen Pearse
University of Sheffield
spearsel98@gmail.com

ABSTRACT

The Agent Tool [1] is a complex composition and perfor-
mance environment that affords the scripting of abstract
agents of varying complexity to control elements of syn-
thesis and sound manipulation. The micro-threaded ar-
chitecture of the system means that all scripts are written
from the perspective of an agent/performer. Consequently,
complex compositions, gestures and performances can be
crafted in a simple and efficient manner. It is designed
to be an open-ended framework whereby all data can be
emitted via Open Sound Control (OSC) for external pro-
cessing if required. User interaction with the system can
come in a variety of forms. These include, but are not lim-
ited to graphical manipulation, scripting, real time video
input and external control via OSC. The system was ini-
tially designed as an environment to allow dynamic and
efficient graphic sound synthesis through extraction of data
from static imagery, video playback or real time video in-
put. The open scripting engine consequently allows the
system to perform direct audification of image stimuli or
conversely allow complex sonifications to take place. The
Agent Tool is a cross-platform package that runs on vari-
ous Linux distributions, Mac OSX and Windows operating
systems. This paper seeks to discuss the agent based func-
tionality the system offers and consequently the composi-
tion and interaction design that the system affords.

1. HISTORICAL CONTEXT

The Agent Tool in its first incarnation was designed to be
a flexible and intuitive means of performing image soni-
fication in a similar manner to systems such as UPIC and
MetaSynth. Iannis Xenakis’ UPIC system [2, 3] and the
TanniX system [4] were designed with the belief that min-
imal direct artistic or technical constraints should be im-
posed on the composer. In Xenakis® words “the UPIC is a
tool that enables one to work in a systematic way on var-
ious levels at the same time” [5, 6]. Tools such as Meta-
Synth, the ANS Synthesizer and HighC used fixed axis
mappings such as pitch and time. However, the UPIC and
TanniX systems are far more flexible in affording the ab-
stract mapping of graphical data to arbitrary compositional
parameters. In the UPIC system, the arc feature allowed
abstract mapping of data to synthesis parameters [2, 3, 7].

Copyright: (©2014 Stephen Pearse et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

-810 -

David Moore
University of Sheffield
d.moore@shef.ac.uk

The Agent Tool was born as a means of creating a flexible
composition and performance interface based upon these
ideas.

2. TECHNICAL OUTLINE

In the Agent Tool we can assign abstract entities, known
as agents, to control performance parameters. Within the
system an agent’s behaviour can be scripted to control syn-
thesis, compositional and/or performance logic to varying
degrees of complexity. Consequently the agent Tool offers
a form of object oriented composition and interaction. The
scripting engine allows users to program dynamic map-
pings of abstract data to audio and/or control parameters.
Agents communicate bi-directionally with external tools
and software via OSC. The system is compatible with Su-
perCollider’s OSC interface and features a suite of tools
which can dynamically spawn and manipulate nodes on a
remote SuperCollider server.

The Agent Tool’s Al system, utilizes a form of co-operative
multitasking rather than the commonly used Finite-State
Machine (FSM). This approach then allows the scripted
behaviours to be much simpler. Coroutines are used to al-
low each Al to operate in its own pseudo-thread without
the resource cost of system threads [8]. An agent’s be-
haviour executes sequentially and it’s coroutine yields to
allow others to execute.

2.1 System Architecture

Agent Tool was developed using a variety of Open Source
libraries and tools.

e Application developed in C++ and Qt.
e Lua provides embedded scripting.
e LibLo allows OSC communication.

e OpenCly is used for image processing.

3. THE AGENT

As previously stated, agents within the system represent
script-able compositional entities. Each script exists within
its own coroutine with its own lifetime and concept of time.
This approach means that scripting is simple and efficient
whereby the user programs behaviour from the perspective
of the agent itself. For example, scripting motion becomes
as simple as calling a ‘move’ function or setting a velocity
property. A sequence of actions can be described as a list
of steps to follow, rather than the using an update function

mailto:spearse198@gmail.com
mailto:d.moore@shef.ac.uk
http://creativecommons.org/licenses/by/3.0/

Proceedings ICMC|SMC|2014

14-20 September 2014, Athens, Greece

Figure 1. Agent Tool ’s Graphical User Interface

that would be necessary in a FSM implementation . Such
an approach means that agents can represent sequences of
varying lengths, from entire compositions to finite musical
gestures. New agents can be instantiated from within the
Graphical User Interface (GUI) in real time.

In the Agent Tool Version 1.0, agents exist within a two-
dimensional canvas which they can traverse as the user sees
fit. Any agent within the system has a variety of properties
which can be manipulated, extracted or set in real time.
Properties can exist to store a variety of data types, float-
ing point or integer values, boolean states, strings of text
or two dimensional vectors. When an agent is created it
is given a set of properties by default . These properties
include positioning and velocity vectors, lifetime/duration,
mass, thrust and a string representing the name of a Su-
perCollider synthesizer to spawn (known as a SynthDef).
Upon setting the ‘SynthDef” property, either in the GUI or
from within the scripting engine, all control properties will
be bundled into a OSC message spawning a SuperCollider
node of the appropriate type. This link to synthesis is op-
tional. Agents can exist purely as control structures. The
system imposes no direct mapping strategies or constraints
on the user. Mappings can be dynamically changed over
time, for example if a set of conditions are met. Further-
more, the user can directly choose the mapping of proper-
ties within the GUIL.

3.1 Scripting API

Vaggione [9] and Dahan [10] both argued that time within
a system should not act as a shared constant, instead, tools
should allow the traversal of various time scales at once as
a reflection of how the composer works [11]. The Agent
Tool echoes this sentiment ensuring that all events occur
on individual and relative time-scales to each other.

Each agent exists within its own coroutine. A direct re-
sult of this is that each agent has its own concept of time.
Consequently it is possible to construct definitive composi-
tional events and gestures by spawning agents . Sequences
of events are created through repeated spawning or by agents
that themselves spawn child agents . Furthermore, this ap-
proach affords the creation of relative sequences of events.

At any given time a user can load new scripted behaviours
into the system. Upon loading a script, the system moni-
tors the state of that file so that if the script is altered by

-811-

another software package, it is reloaded instantaneously.
To create an agent the user has to fulfil two requirements.
Al behaviours are defined using a single Lua function with
a special prefix (‘ai_’). These behaviour functions are then
made available within the GUI for the user to spawn as
agents . In effect these functions represent the ‘brain’ of
the agent .

Listing 1 illustrates how a user can create a simple agent
that utilizes its horizontal and vertical positioning to con-
trol stereo pan positioning and pitch respectively. Behaviour
functions such as ‘setp()’,‘getp()’ and ‘addp()’ allow an
agent to modify their own state or store data.

function ai_HelloWorld ()
initai ()
local position = getp(”’pos™)
addp (" freq” ,position:y())

local worldsize = getworldsize
O
addp(”pan”, ((position:x /

worldsize) x 2) —1)
addp (”amp” ,0.8)
setp (”SynthDef” ,”default”)
pause (1)
die ()
end

Listing 1. A complex “Hello World” agent

The software provides a rich and varied Lua interface al-
lowing the crafting of a variety of agent behaviours. The
API affords control over: agent relationships; agent spawn-
ing; image retrieval/writing; the mapping of controls and/or
synthesis components and the amount of user control within
the GUL

3.1.1 Relationships and Interactions

Any agent within the system can have a near infinite num-
ber of child agents . At any time an agent has the ability
to spawn other agents of any given type. These new agents
can exist as children of the parent agent , or can be assigned
to exist within the active ‘world’. All agents consequently
have the ability to manipulate all of their child agents by
setting the child’s properties. It is possible for agents to
monitor the properties of all child agents . In practice this
can be used to monitor the amplitude, spatial positioning

Proceedings ICMC|SMC|2014

and harmonic content of child agents . A parent agent can
directly manipulate whole collections of agents to achieve
consonance or dissonance. across the properties of collec-
tions of agents .

Whilst agents do not implicitly create audio, it is possi-
ble to utilize the hierarchical relationship within the frame-
work to create ‘control’ agents which may indirectly cre-
ate sonic events. One could consider these control agents
as defined sonic objects or sequences.. Through this tech-
nique it is possible to realize highly complex forms of gran-
ular synthesis whereby the user interacts primarily with a
agent whose job it is to simply spawn hundreds of child
‘grains’. It is entirely up to the user to decide what these
child grains should be, whether they should generate sonic
material, or whether they themselves act control further
agents . This affords recursive compositional ideas to be
realised.

3.1.2 Image Audification and Sonification

The Agent Tool allows users to use static imagery, video
files and live webcams as image stimuli within the system.
The open nature of the system allows direct audification
akin with systems such as MetaSynth and the ANS Synthe-
sizer, as well as abstract sonifications such as those found
in UPIC, TanniX and to some extent the ‘Music Sketcher’
[2,3, 12, 13]. Whilst these systems are limited to static
imagery, the Agent Tool allows real time stimuli and the
ability for scores can be ‘scanned’ in via the usage of an
attached web-cam.

As previously discussed, the Agent Tool does not impose
a set mapping strategy. Consequently, the way in which an
agent reacts to image stimuli can be scripted. For example,
colour data can be read as a means of dictating the pitch
and amplitude of an oscillator (akin with the audification
approach of MetaSynth). However, unlike MetaSynth, a
user of the Agent Tool can freely dictate the part of the
image used to control a synthesis voice. Each voice can
have completely independent synthesis algorithm. Simi-
larly, these voices can be replaced with filters or delay units
to which another sound source/performer may be rooted
through. In these instances, the colour intensity at the lo-
cation of the agent can be used to dictate the amplitude or
wet/dry mix of an effect.

On the other hand imagery can be used purely as control
data in the creation of a higher level system. For exam-
ple, it is possible to use colour data to dictate whether an
agent should continue to exist. The ‘checkLife()’ function
(see listing 2) that comes with the system can be invoked
at any time from a behaviour script, and kills an agent if
the average colour component at its position drops below a
threshold.

function checkLife (threshold)
if getmeancol(0) <= threshold
then
die ()
return true
end

Listing 2. The ‘checkLife’ function.

-812 -

14-20 September 2014, Athens, Greece

Conversely, it is possible for the image data to dictate
the spawning of new agents . The ‘spawnLife() * function
(see Listing 3) can be used to spawn agents of the users
choosing when the average colour component exceeds a
threshold. An advanced form of this function allows the
spawning of agents when specific colours are found within
an image.

function spawnLife(threshold , parentld ,

agentType)
if getmeancol(0) >= threshold
then

spawnrelative (parentld
,1,agentType ,0,0)
return true
end

Listing 3. The ‘spawnLife’ function.

As well as extracting colour data directly from directly
under the agent , it is also possible to read the image from
any point that the user dictates. This feature allows for far
more complex image analysis. In another example agents
are programmed to be attracted to, or repulsed by certain
image components. The system comes with a function that
returns a vector to the closest position within a circular ra-
dius where a colour components exceeds a threshold. If
the returned vector is used to influence an agent’s velocity,
agents will be attracted to or repelled from specific colours.
In combination with a web-cam it is consequently possible
to use real word items and environments to enforce mo-
tions and interactions with agents .

It is also possible for agents to draw colour data onto
an image surface within the system. This affords agents
a means of communicating via the image. One agent can
deposit information in the image, whilst another can read
and react to the changing image. Image functions allow
the composer to create self generating sonic landscapes.
They can interact both through the Agent interface and the
live image interface. Another example, is the possibility
of graphically ‘scoring’ image stimuli on paper and scan-
ning into the system to create repeatable simulations and
performances.

3.1.3 Tracking

Through the API one agent can track another agent . Agents
can perform queries such as ‘Is agent within a circular ra-
dius?” or ‘Find the closest agent?’. Consequently, it is
possible to create agents that are attracted to or repelled by
others. The software also features an example behaviour
that implements Reynold’s famous ‘Boids’ flocking algo-
rithm [14] whereby an agent ’s position and velocity is dic-
tated by rules of separation,alignment and cohesion. In
combination with real-time user input (by user interface,
image stimuli or external controller) the user can interact
with this simulation in real-time. Furthermore, the user has
the ability to adapt the provided agent function, mapping
agent properties to sonic properties as they see fit.

Proceedings ICMC|SMC|2014

14-20 September 2014, Athens, Greece

Figure 2. Agent Tool using a web-camera to perform a basic form of hand tracking

3.1.4 External Controller Support

Every agent property can be set via OSC. This enables ex-
ternal control from a wide range of software and hardware
controllers. Future iterations of the system will allow di-
rect input, and consequently script-able interaction with
both Leap Motion and Kinect controllers.

4. AGENT BASED INTERACTIONS

Agent Tool allows users to design (and consequently com-
pose) materials that are entirely relative to one another.
Rather than instantiating or controlling items, synthesis or
manipulation at a global level, it is possible to sequence
events and relationships that are relative to one another.
Consequently, this allows for a much more dynamic and
‘reactionary’ approach to composition and performance in
allowing the user to vary when agents are instantiated in
performance, be it in front of an audience or within the
studio. The system enables the crafting of materials and
interactions based purely upon defined relationships and
logic which can be realised in a non-linear fashion.

As agents are abstract entities and can exist merely as
controllers or objects that directly control synthesis, the
amount of interaction that the user has can vary depend-
ing on the given context. Similarly, as there are no implicit
mappings within the framework, OSC can be emitted in
a format that the user so wishes from within the environ-
ment. Furthermore, these mappings can vary over time and
can potentially react to elements within the environment. It
is therefore possible to create hybrid forms of instruments
that are both reactive and generative. Crucially, the multi-
tasking framework the system is built upon allows interac-
tions to be crafted and executed efficiently.

5. MUSICAL CONTEXTS

Two vastly different acousmatic works have been composed
by the author using Agent Tool , Liten Rost (2014) and
Mikro Studie A+B (2014). Each of these works represents
a different set of compositional methodologies and imple-
mentations. Liten Rost on the one hand is a fexture car-
ried work exploring the purity of the female voice. Mikro

-813 -

Studie A+B on the other hand is a study in flocking mi-
crosound and is completely gesture carried [15]. The us-
age of Agent Tool varied substantially across these two
works, both in terms of agent and interaction. In both in-
stances however, agents were used to spatialize materials
of several configurations of speakers.

In the context of Liten Rost Agent Tool was used to de-
sign a collection of instruments utilizing different forms
of granular synthesis that should then be explored through
real time interactions with the system. The author subse-
quently interacted with a collection of control agents that
each in turn spawned and subsequently controlled a variety
of synthesis parameters of child grains. A suite of different
child grains were designed, each using different forms of
logic to control their behaviour. For example, one of the
control agents dictated different flocking attributes of its
children whereas another controlled what attributes of real
time video could be analyzed and synthesized.

The scripting of spatialization within these works became
highly intuitive via the parent child relationships of the sys-
tem. In both contexts control agents were used to repre-
sent single speakers and the distance of child (or non-child)
agents from these controls would represent the amplitude
of that source in that speaker. Consequently it became easy
to reposition and script the motion of these speakers across
time.

As a composer, utilizing hundreds of different agent in-
stances, each with their own unique parameter mappings
within the same framework, offered a highly efficient work-
flow yielding very complex sonic results. With all of the
agents within the system reacting to one another, the in-
struments became highly ‘learnable through usage. Once
an agent or set of agents were learnt through practice, it
then became possible to score sections of the work within
the scripting APL

The scripting of complex sonic relationships and passages
consequently became the focus of the work Mikro Studie
A+B with real time interaction being strictly prohibited.
The flexibility of the system was not without its drawbacks
however. Often being confronted with endless possibili-
ties, the scripting engine itself somewhat limited compo-
sitional activity. It was only through the design of real

Proceedings ICMC|SMC|2014

time interactions that the system became a highly efficient
means of sonic exploration and scoring. Akin with de-
signing instruments in other audio programming environ-
ments such as Pure Data and MaxMsp, each new agent
that is crafted requires interaction and exploration for its
behaviours to be learnt by a user. When these agents are
put in a context whereby thousands exist at any one given
time, the slightest change to the compositional or control
logic can have huge implications upon the materials pro-
duced.

6. CONCLUSIONS

The form of co-operative multitasking that the system uti-
lizes allows relationships, mappings and interactions to be
crafted from the perspective of agent within the system.
The scripting framework consequently allows these sys-
tems to adapt and react to user input in a variety of forms.
Furthermore, the reactions to user input can be scripted to
evolve over time to suite the needs of a compose or per-
former. From simple scripting users can instantiate highly
complex sonic materials and interfaces to suite a variety
of contexts. Future development on the system will be fo-
cused on direct integration of a suite of commercial mo-
tion controllers as a means of enabling greater flexibility
for performers.

7. REFERENCES

[1] S. Pearse, “The agent tool,” http://www.theagenttool.
co.uk, accessed: 2014-07-14.

[2] C. Roads, The Computer Music Tutorial.
MIT Press, 1994.

Cambridge:

[3] G. Marino, M.-H. Serra, and J. M. Raczinski, “The
upic system: Origins and innovations,” Perspectives of
New Music, vol. Vol. 31, No.1, pp. 258-269, 1993.

[4] Coduys and Ferry, “Iannix: Aesthetical/symbollic vi-
sualisations for hypermedia composition,” 2009.

[5] H. Lohner, The UPIC system: a user’s report. Com-
puter Music Journal, 1986, vol. 2, no. 10, pp. 42-49.

(6]

, Interview with lannis Xenakis. Computer Music
Journal, 1986, vol. 10, no. 4.

[7]1 P. Manning, Electronic and Computer Music. Oxford

Oxfordshire: Oxford University Press, 2004.

[8] B. Dawson, “Micro-threads for game object ai,” Game
Programming Gems, vol. 2, 2001.

[9] H. Vaggione, “Some ontological remarks about mu-
sic composition processes,” Computer Music Journal,
vol. 25, no. 1, pp. 54-61, 2001.

[10] K. Dahan, “Domaines formels et representations dans
la composition et I’analyse des musiques electroacous-
tiques,” Ph.D. dissertation, CICM, Universit e Paris
VIII, France, 2005.

14-20 September 2014, Athens, Greece

[11] J. Thiebaut, P. Healley, and N. Kinns, “Drawing elec-
troacoustic music,” in International Computer Music
Conference. International Computer Music Associa-
tion, 2008, pp. 261-264.

[12] J. Thiebaut, “Sketching music: Representation and
composition,” Ph.D. dissertation, Queen Mary, Univer-
sity of London, 2010.

[13] 1. Xenakis, Formalized Music: Thought and Mathe-
matics in Composition. ~Bloomington: Indiana Uni-
versity Press, 1971.

[14] C. Reynolds, “Flocks, herds, and schools: A dis-
tributed behavioral model, in computer graphics,” SIG-
GRAPH ‘87 Conference Proceedings, vol. 21, no. 4,
pp- 25 — 34, 1987.

[15] D. Smalley, “Spectromorphology: explaining sound-
shapes,” Organised sound, vol. 2, no. 2, pp. 107-126,
1997.

-814-

http://www.theagenttool.co.uk
http://www.theagenttool.co.uk

