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ABSTRACT

This paper presents a methodology for predicting the pitch

of bass notes by utilising their metrical position within

the bar. Our system assumes two separate audio channels

for drums and bass. We make use of onset detection and

beat tracking algorithms to determine the onset times for

each bass note and the beat locations. A monophonic bass

track is analysed for repetitive structures relative to the beat

grid, enabling the system to make a prediction of the pitch

of each bass note prior to any pitch-related analysis. We

present an analysis on a small collection of studio record-

ings.

1. INTRODUCTION

When humans participate in live music performance, an el-

ement of prediction is required. Where there is a musical

score, performance requires each player to simultaneously

predict the desired playing time for each specified musical

event and enact the requisite motor actions ahead of time

to schedule each note onset. Where music is improvised,

the underlying structure of the music must be anticipated

in order to compose phrases that will work in the context

of the performance. Whilst signal processing can provide

information about auditory events after the fact, Collins [1]

regards the ability of human musicians predict and antici-

pate on a variety of time-scales as crucial to their skill in

performing.

Vercoe and Puckette [2] proposed the listen-perform-learn

model as an integral design in their score following sys-

tem. Raphael [3] makes use of Bayesian graphical models

to learn a performer’s timing tendencies from a series of

rehearsals. To participate in improvised music to a steady

beat, such as blues and rock jams, a player is required to

predict key and chord changes ahead of time and yet this

is unproblematic for human musicians, partly on the basis

that these tend to involve the repetition of a set sequence

of chords [4].

Prediction plays an important role in the development of

real-time beat trackers which tend to operate on the ba-

sis that musical events occur more often on the beat than
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not. Dixon and Gouyon [5] distinguish between predictive

and descriptive beat tracking behaviour. The former antic-

ipates the beat ahead of time, whereas the latter labels the

beat having observed the audio. Real-time beat trackers

generally function in a causal predictive manner. Ellis’s

[6] model uses dynamic programming to calculate the beat

times and has been used in a real-time context [7] [8] in

which beat predictions are continually updated on the ba-

sis of new observed information.

Computational modelling of composition has proved a

difficult task [9]. Pearce and Wiggins [10] examine how

Markov models or n-grams have been used to model the

statistical expectation of melodic parts. Assayag and Dub-

nov [11] propose the use of the factor oracle, used in

string matching tasks, to analyse harmonic and melodic

sources within music improvisation. Stark and Plumb-

ley [12] make predictions of the values of future beat-

synchronous chroma vectors by matching recent observa-

tions in the sequence to similar occurrences in the past.

Stowell and Plumbley [13] used a predictive schema for

real-time classification of a human percussive vocal in the

“beatbox style”, whereby a fast reaction is made to clas-

sify audio using a provisional classification whilst a more

reliable delayed decision is made afterwards. This system

produces audio (such as a kick or snare sound) based on

the initial classification at low latency after the onset is de-

tected, but makes changes to the audio output where this

initial classification appears erroneous.

In this paper, we investigate a related problem of real-

time bass pitch prediction based on musical position. For

live performance, onset detection methods [14] [15] can re-

liably indicate the presence of a new note event with a short

latency. However, the determination of pitch requires the

use of pitch tracking techniques, such as the yin algorithm

[16], which would impose a larger latency than the thresh-

old for successful networked performance, measured to be

approximately 30 msec [17]. A predictive schema might

be used to overcome such latency issues.

The predicted output could be used in the synthesis of

audio parts or in augmenting the performance with light-

ing or visuals. Currently, synchronised computer accom-

paniment can be unreliable, particularly when reliant on

beat trackers which are vulnerable to errors such as skip-

ping ahead or behind by a beat [18]. By following the

bassline, a beat tracker might be able to recognise when

this occurs and autocorrect. The proposed schema of beat-

synchronous bassline analysis makes it comparatively sim-
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Figure 1. Overview of the algorithm. Pitched events are

analysed whilst onset events are labelled according to pre-

dictions.

ple to follow the structural sections within a song, thereby

bringing about an interactive system that is capable of fol-

lowing an expected performance.

2. METHODOLOGY

Our proposed system uses beat tracking to provide an ap-

proximation of the beat grid which can be used to trans-

form event times into a quantised musical time. We assume

that there is a dedicated bass stream, typically be through

use of a D.I. box or an insert on the mixing desk, and also

a general audio stream available suitable for beat tracking,

such as from a mono mix of all channels or a room micro-

phone on the drums. A selection of real-time beat tracking

algorithms have been developed that might be suitable for

such a task, including B-Keeper [19], a specialised drum

tracking system, IBT∼ [20], a multi-agent system based on

Dixon’s Beatroot [21], and btrack∼ [7] and beatseeker∼
[8] which use autocorrelation. The proposed algorithm de-

tects new bass events using an onset detector and finds the

musical position relative to the beat grid. By estimating

the optimal lag at which the bassline repeats, we can make

a reasonable causal prediction for the pitch using previ-

ous pitch tracking estimates. A similar system has been

proposed by Stark and Plumbley [12] for the prediction of

beat-synchronous chroma sequences. An overview of the

algorithm is shown in Figure 1.
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Figure 2. Scores of correlation of quantised pitched events

at a range of lags for the song The Radio’s Prayer I (top)

and Idiots Dance (bottom)

2.1 Event Quantisation

From a standard onset detector, such as those proposed by

Bello et al. [15], we obtain event times from a bass sig-

nal with low latency, typically under 10 msec. In practice,

we compensate for latency by first detecting the onset us-

ing peak thresholding on the onset detection function, and

then using a second stage that determines the precise point

for which the energy change is greatest in the signal. This

is done iteratively by dividing the recent audio buffer into

segments, choosing the segment which has the highest en-

ergy, then repeating the process until the buffer segment

contains just one sample and an exact sample position is

chosen.

We then wish to specify the musical position of the event

relative to the beat grid. Let our sequence of beat times be

{b0, b1, b2, b3, ..}. Then for an event at time t, we find n

such that bn <= t < bn+1. The musical position of the

event, γ(t), in beats from the start is given by

γ(t) = n+
t− bn

bn+1 − bn
. (1)

If we wish to quantise this position to be on an eighth note,

triplet, sixteenth or sixteenth note triplet relative to the beat

times, we can divide the beat into twelve and instead of the

fractional term, find the value m for which n+ m

12
is clos-

est to γ(t) and meets the condition that 3 divides m or 4

divides m. For pitch detection, we use the yin algorithm

[16] on the segment of audio that immediately follows the

detected onset. Our implementation used a real-time ver-

sion of the pyin algorithm by Mauch and Dixon [22] with

a framesize of 8192 to provide sufficient resolution in the

lower frequencies, although the probabilistic component of

their approach was not required. This results in a frequency

for each note event, that we then round to the closest MIDI

pitch, p(t).
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2.2 Repeated Structure Detection

To detect repeated structures, we look for the optimal shift

at which the same bass part is played. This is particularly

common in rock, blues, pop and dance music, although rel-

atively rare in free improvisation, classical and much jazz

music. For a sequence of pitched events at quantised po-

sitions relative to the beat grid, we compare it to the same

sequence shifted by the integer multiples of beats. At each

possible lag, measured in beats, we calculate a score using

a method similar to cross-correlation.

Let pn be the midi pitch of the note at quantised musical

position n, obtained from the onset time using Equation 1

and quantising. Our mean correlation value for each lag is

given by

score(lag) =
1

N

∑

n

δpn,pn−lag
(2)

where n is the musical position relative to the beats, pn is

the pitch found at beat position n if such an event exists, N

is the total number of quantised events found at the given

lag that could be compared and δpn,pn−lag
is 1 when the

pitches match and 0 otherwise. Figure 2 shows the scores

across a ranger of lags for two different songs. Where

the song’s bassline repeats every eight beats (top), we see

a series of peaks at multiples of this lower lag, whereas

in the bottom plot, the bassline only repeats after sixteen

beats. Our optimal lag, used in the causal prediction of

bass pitches, is that with the highest score up to a maxi-

mum of 32 beats. A weighting system can be used to give

preference to a longer or shorter number of beats .

2.3 Pattern Prediction

We made use of two simple methods for predicting the

pitch of each bass note. The first, which we shall refer

to as the naive method, involves looking back at the ob-

served pitches at successive multiples of our optimal lag

and choosing the pitch for the first observed note event

found at a corresponding position. For example, if the op-

timal lag is 8 beats, then we first look if there was a bass

note observed exactly 8 beats prior to the one under con-

sideration. Where such an event is found, we predict our

current bass note to have the same pitch as this previous

observation. Where one is not, we look for a note 16 beats

prior, and so on.

However, this does not take into account that there may

be changes between song section and that bass line phrases

might vary within the same section. To try to exploit our

knowledge of transitions made within previous sections,

we make an additional constraint that the note found in

the same corresponding metrical position has an immedi-

ately preceding note that matches the most recently ob-

served note in both pitch and corresponding metrical po-

sition. Thus we ensure that the first order Markov transi-

tion in pitch for our predicted note from the preceding one

is identical to that observed for the note found at a corre-

sponding position that has been used to make this predic-

tion.

3. EVALUATION

To evaluate our two methods, we chose some studio multi-

track recordings that allowed the loading of a room audio

track and a direct bass track. We made use of the Vamp

implementation of an offline beat tracker 1 based on the

method of Davies et al. [23] and Ellis [6]. For each note,

we counted whether the predicted pitch matched the ob-

served pitch. We have also included the statistic for when

the notes matched but differed by an octave. This octave

difference is not likely to be due to the pitch detection

method (which is reliable for a direct channel of mono-

phonic bass), but rather due to differences in the bass part

being played. The evaluation is scored on all bass notes for

which the yin pitch detection algorithm outputs a result, re-

gardless of metrical position.

Where there is a section change in a song, the naive

method naturally results in poor scores, since the bass part

no longer matches what was occurring at the previous lag.

The results are shown in Table 1. The first order Markov

method, which requires that the bass part used for the pre-

diction has a matching previous note, fares a little better in

general. On rock material, we tend to observe correct bass

predictions approximately 50% to 70% of the time, with

the result dependent upon structural changes in the song

and the degree of improvisation in the bassline part.

4. DISCUSSION

These methods provide a simple and effective way to pre-

dict bass pitches in real-time, particularly when there is

a repeating part or section. The main difficulty for these

methods is where the piece consists of a sequence of tran-

sitions between higher level structures. In this case, we

might exploit the failure of the algorithm to correctly pre-

dict the pitch for successive note events to recognise that a

new section has begun, thereby generating section specific

predictions.

Liang et al. [24] propose a methodology for scheduling

synchronous events across a network where there is an un-

known latency in the communication of messages. Assum-

ing access to a shared clock, such as the atomic clock, each

component of the computer performance system sends the

system time for the musical event and the tempo as a triple

(beat position, system time, tempo), thus enabling an ac-

curate prediction of future beat times even when there is

significant latency in the network. By contrast, a beat

tracker or score follower that simply sends a message on

each beat is rendered highly unreliable in such a scenario.

Their method for communicating beat times could be em-

ployed here to allow the integration of bassline analysis

and prediction within a networked performance.

Our method makes use of a drum mix and a separate

bass channel, thereby allowing analysis of bass events at

a higher semantic level, with metrical position and associ-

ated pitches. A potential application here is the learning of

stylistic trends in bass line playing from a corpus of multi-

track recordings, thereby making it suited to the computa-

1 http://vamp-plugins.org/rdf/plugins/
qm-vamp-plugins#qm-barbeattracker
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Naive method First Order Markov

Song lag Correct Octave Wrong Correct Octave Wrong

Down The Line I 8 43.4 5.8 50.8 53.9 6.5 39.6

Down The Line II 16 49.2 3.3 47.5 65.0 5.6 29.5

Motorcade 16 45.4 5.6 49.1 61.1 2.8 36.1

The Radio’s Prayer I 8 41.5 7.0 51.5 55.6 6.4 38.1

The Radio’s Prayer II 16 54.1 4.5 41.5 70.1 4.5 25.5

Diamond White 16 64.1 12.3 23.6 62.6 8.2 29.2

Generic Rock Jam I 16 48.2 17.6 34.3 52.8 9.9 37.3

Generic Rock Jam II 16 54.6 15.9 29.5 46.9 14.4 38.7

Generic Rock Jam III 16 71.9 12.3 15.9 73.2 11.9 14.9

Upside Down Dues 16 69.3 14.6 16.1 74.1 11.7 14.3

Orange Crush 16 74.9 3.3 21.9 74.0 2.1 2.4

Table 1. Percentage results for the note predictions across several examples from a small corpus of live recordings.

tional creativity task of automatic generation of a bassline

in a given style that fits a given chord progression.

The code for the evaluation study is available online at

the Sound Software website 2 .

5. CONCLUSION

We have presented a method of beat-synchronous analysis

of bass parts that enables us to make predictions about the

likely pitch based on the note’s position within the musical

structure. A beat tracking algorithm is used to determine

the metrical position of quantised bass onset events which

are ascribed a pitch using standard pitch detection methods

for monophonic audio. To predict bass pitches in a causal

manner we find the optimal lag at which the bass part re-

peats. Two prediction methods are presented. The first

chooses the most recent pitch observed at a correspond-

ing metrical position according to this lag. The second

method requires that the note at a corresponding metrical

position has a previous note that matches the most recently

observed note for metrical position and pitch, thereby pre-

serving the first order Markov transition for the current pre-

dicted note event and the previous one.

The output of the prediction algorithm might be used to

recognise section changes within a piece. The algorithm

could then be improved through the recognition and learn-

ing of higher level structure for each song. If a rehearsal

version of the song was available, further analyses might

improve predictions made within each section. Our predic-

tion is currently based solely on position within the most

repetitive musical structure and this might be improved

through the use of Markov techniques or string matching

techniques to learn likely phrases.

One potential application is the use within synchronisa-

tion systems for rock performance. At present, such sys-

tems tend to rely solely on beat tracking to adjust their

tempo to match that of live musicians. By monitoring

the bass parts played, such systems be made more reliable

and recover from errors where they get ahead or behind

the correct beat. There is significant potential to develop

further analysis techniques for multitrack audio channels

2 https://code.soundsoftware.ac.uk/projects/
bassline-prediction/repository

of group improvisations, studio recordings and band re-

hearsals which might lead to new creative systems for in-

teraction and composition.
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