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ABSTRACT

A score-following algorithm for polyphonic MIDI perfor-

mances is presented that can handle performance mistakes,

ornaments, desynchronized voices, arbitrary repeats and

skips. The algorithm is derived from a stochastic perfor-

mance model based on hidden Markov model (HMM), and

we review the recent development of model construction.

In this paper, the model is further extended to capture the

multi-voice structure, which is necessary to handle note re-

orderings by desynchronized voices and widely stretched

ornaments in polyphony. For this, we propose merged-

output HMM, which describes performed notes as merged

outputs from multiple HMMs, each corresponding to a voice

part. It is confirmed that the model yields a score-following

algorithm which is effective under frequent note reorder-

ings across voices and complicated ornaments.

1. INTRODUCTION

Automated matching of notes in music performances to

notes in corresponding scores in real time is called score

following, and it is a basic machine-listening tool for real-

time applications such as automatic accompaniment and

automatic turning of score pages. Since the first studies

[1, 2], many studies have been carried out on score follow-

ing (see [3] for a review of studies in this field, and for

more recent studies, see, e.g., [4, 5, 6, 7], just to mention

a few). Score-following algorithms generally accept either

acoustic signals or symbolic MIDI signals of performances

as input. Algorithms for acoustic signals are applicable to

a wider range of instruments and situations, and they have

been improved over the years [8, 5, 6, 9]. On the other

hand, using MIDI inputs has advantages in quick corre-

spondences to onsets and in clean signals [10, 11, 4, 7],

and it has potentially vast demand for score following of
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polyphonic piano performances. We focus on polyphonic

MIDI signals for inputs in this paper.

A central problem in score following is to properly and

efficiently capture indeterminacies and uncertainties of mu-

sic performance, which are included in tempos, noise in

onset times, dynamics, articulations, ornaments, and also

in the way of making performance mistakes, repeats, and

skips, especially in performances during practice [7]. Stochas-

tic models are often used to derive algorithms that handle

these indeterminacies and uncertainties [3]. Performance

mistakes and tempo variations have been treated since the

earliest studies [1, 10]. Repeats and skips to restricted

score positions were discussed in [4, 12] for monophonic

performance, and generalization to arbitrary repeats and

skips for polyphonic performance was discussed in [13, 14,

7]. Recently, quantitative analysis and stochastic modeling

of performances with ornaments were carried out [15], and

an accurate score-following algorithm has been obtained.

One of the purposes of this paper is to report the current

status of these studies.

In [15], it was found that reorderings of performed notes

across voices in complex polyphonic passages such as poly-

rhythmic passages and passages with many ornaments re-

mains as a major cause of matching errors. The reorder-

ing is caused by asynchrony between voices and widely

stretched ornaments, manifesting the complicated tempo-

ral structure of polyphonic performance [16]. The same

problem has been addressed in studies on offline score-

performamce matching [17, 18, 19]. It has been observed

that the temporal structure is much simpler inside each

voice part 1 [17, 18], suggesting that use of voice informa-

tion is essential for precise score following. Because voice

information of performed notes is implicit in piano perfor-

mance, an algorithm should hold a function to estimate the

voice part of each note during score following, and it must

be computationally efficient for real-time processing.

In this paper, we propose a score-following algorithm us-

ing both voice information and temporal information which

can further handle note reorderings due to polyphonic struc-

ture. It is derived from a hidden Markov model (HMM) of

1 In this paper, a voice part signifies a totality of single or multiple
voices.
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performance which extends the model in [15] to capturing

multi-voice structure. The performed notes are described

as merged outputs from multiple HMMs, each correspond-

ing to a voice part. The basic model, which is named

merged-output HMM, is also potentially useful for other

tasks in music information processing, and we discuss the

model and its inference algorithms in detail. A part of this

work was reported in [20]. Details and extended discus-

sions of the model and algorithm will be reported else-

where.

2. TEMPORAL HMM OF PERFORMANCE AND

ARBITRARY REPEATS AND SKIPS

In this section, we briefly review our works [7, 15] to pre-

pare for the following sections. For details, see the original

papers.

2.1 Temporal HMM

A score-following algorithm should hold a set of complex

rules to capture various sources of indeterminacies and un-

certainties of music performance mentioned in Section 1.

Use of stochastic models has been shown to be effective

to derive such an algorithm [3]. One constructs a stochas-

tic model that yields the probability of a sequence of in-

tended score positions and of generated performed notes

based on a score, and the score-following problem can be

restated as finding the most probable sequence of intended

score positions given a performance signal. HMM is par-

ticularly suited for this because it effectively describes the

sequential, erroneous, and noisy observations of music per-

formance, and there are computationally efficient inference

algorithms [21, 8].

The use of temporal information is important for score

following of performances including ornaments such as

trill, arpeggio, and grace notes, since the clustering of per-

formed notes into musical events, e.g., chords or arpeg-

gios, often becomes ambiguous without it. An HMM was

proposed to describe the temporal information explicitly.

There are two equivalent representations of the model, one

describes time as a dimension in the state space and the

other has output probability of inter-onset intervals (IOIs).

The latter representation is explained in the following.

First, let i label a unit of score notes that is represented

by a state, which will be called a musical event and spec-

ified in Section 2.3. The state space of the model is rep-

resented by an intended musical event im, where m =
1, · · · ,M indexes the performed notes with the total num-

ber M . The pitch and onset time of the m-th performed

note are denoted by pm and tm. The music performance

can be modeled as a two-stage stochastic process of choos-

ing the intended musical events first and then outputting

the observed performed notes. The first stage is described

as transitions between states, and the temporal information

can be described as output of IOI δtm = tm − tm−1 at

each transition. Assuming that the probability of choos-

ing the state im is only dependent on the previous state

as P (im|im−1) = aim−1im and the output probability of

pitch and IOI is only dependent on the current and the pre-

Straight

progression
Large skip

Note deletion

Chordal note,

note/chord insertion

Repeats

Figure 1. Transitions of the HMM for a simple passage

and their interpretations [15].

vious states asP (pm, δtm|im−1, im) = bim−1im(pm, δtm),
the probability of the performance sequence (pm, im, tm)Mm=1

is given as

P
(

(pm, im, tm)Mm=1

)

=
M
∏

m=1

aim−1imbim−1im(pm, δtm),

(1)

where the factors for m = 1 mean the initial probabilities

by abuse of notation.

The transition probability aij describes how players pro-

ceed in the score during performance (Figure 1), and the

output probability describes how they actually produce per-

formed notes. These probabilities can be obtained from

performance data in principle. However, for efficiency of

learning parameters, the dependence on the state pair is as-

sumed to be translationally invariant in the state space, and

the output probability is factorized into independent pitch

and IOI probabilities. Then, bij(p, δt) = b
pitch
j (p)bIOI

ij (δt),
where we further assumed that the pitch probability is only

dependent on the current state for simplicity.

2.2 Repeats and skips, and computational cost

As shown in Figure 1, large repeats and skips are described

by the transition probability aij with large |j − i|. Since

it is difficult to anticipate all score positions from and to

where players make repeats and skips, it is practical to con-

sider arbitrary repeats and skips, which can be expressed

as aij ̸= 0 for all i and j. In this case, all score positions

and transitions must be taken into account at every time,

and the computational cost for the conventional inference

algorithm is large for long scores. For example, a Viterbi

update requires O(N2) complexity, where N is the num-

ber of states, which is too large for real-time processing

when N ≳ 500.

There are solutions to reduce the computational cost by

using simplified models, one of which is the model with

uniform repeat/skip probability where aij is constant for

large |j − i|. It can be shown that the computational com-

plexity can be reduced to O(DN) when aij is constant for

j < i − D1 or j > i + D2 (D = D1 + D2 + 1). The

value of D is 3–10 in practice, and hence the complexity

is significantly reduced. We can generalize the model to

outer-product HMM, where aij is an outer-product of two

vectors for large |j − i| while keeping the computational

efficiency. The details of the models and analyses of ten-
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Figure 2. Example of homophonization and HMM state construction. The HMM states are illustrated with their state type

and main output pitches. The large (resp. small) smoothed squares indicate top-level (resp. bottom-level) states.

dencies in repeats and skips of actual performance data are

given in [7].

2.3 Score representation and state construction

An HMM state must be related to a certain unit of score

notes. It can be related to a chord in a simple passage, as in

Figure 1. To capture the temporal structure of polyphonic

performance with ornaments properly, however, we need

more labor. To explain the state construction, we begin

with a score representation for a fairly general polyphonic

passage. A polyphonic passage H , or a score, is defined

as a composition of homophonic passages H1, · · · , HV

and written as H =
⊕V

v=1Hv , where each Hv (v =
1, · · · , V ), which is called a voice, is of the form

H = α1β1y1 · · ·αnβnyn. (2)

Here yi is either a chord, a rest, a tremolo, or a glissando,

and αi and βi denotes after notes and short appoggiat-

uras, which can be empty if there is none. (A short ap-

poggiatura is a note with an indeterminate short duration

notated with a grace note, and an after note is a short ap-

poggiatura which is almost definitely played in precedence

to the associated metrical score time.) In the convention,

αi, βi, and yi have the same score time, and after notes in

αi is associated with the previous event yi−1.

Given a polyphonic passage, we combine the constituent

homophonic passages into a linear sequence of composite

factors each containing all onset events at a score time. It

is written as

H̃ = α̃1β̃1ỹ1 · · · α̃N β̃N ỹN . (3)

This procedure is a generalization of Conklin’s “homo-

phonization” [22], and we call H̃ the homophonization of

H (Figure 2).

The model is described with a two-level hierarchical HMM,

and a state in the top HMM corresponds to a factor α̃iβ̃iỹi

in H̃ . If the factor contains trill, tremolo, or short ap-

poggiaturas, the bottom HMM is constructed with possi-

bly multiple substates as long as the temporal order of the

substates is determinate in straight performances without

mistakes. Three types for the substates, “CH”, “SA”, and

“TR”, each representing a generalized chord, short appog-

giatura, and trill events, are considered, and the transition

probabilities of the bottom HMM are determined through

an argument on expected realizations. The transition prob-

ability in the top HMM is similar to that in the simple

model in Figure 1, whose values were obtained in [7]. Ex-

plicit forms of output probabilities are explained in [15].

3. MERGED-OUTPUT HMM

3.1 The idea of merging outputs of multiple models

A potential problem of the model in Section 2 is that it does

not properly capture reorderings of performed notes due to

voice asynchrony or widely stretched ornaments. Voice

asynchrony influences the ordering of performed notes at

different score times in different voices, especially in fast

or polyrhythmic passages (Figure 3(a)). A widely stretched

ornament, typically a long chain of short appoggiaturas, in

polyphonic passages can overlap with notes in other voices

with different score times (Figure 3(b)).

Since the note reorderings can be described by neighbor-

ing transitions similarly as insertion and deletion errors,

one may wonder if they are already treated properly by the

previous model. However, this is not true as long as the

translationally-invariant transition probability is assumed

because such erroneous transitions are rare in most pas-

sages, and probability values obtained from many perfor-

mances do not reflect such reorderings well, or the whole
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(a) Polyrhythmic passage

(b) Passage with a widely stretched ornament

(c) Sustained trill and repeated chords/arpeggios

Figure 3. Examples of passages which can induce errors

in score following by a simple (one-part) temporal HMM.

result may be crushed if we adjust the values for partic-

ular passages. Changing the probability values for a par-

ticular set of states can help, but there remains a problem

of automatically identify the corresponding score positions

and giving suitable values, which requires knowledge of

the structure of the note reorderings. In particular, it is

difficult to recognize the structure of the reorderings from

the state constructed via homophonization, since the voice

structure is contracted and mostly lost in the process of ho-

mophonization. If we could preserve the voice structure in

the model, it may become much easier.

Another problem arises, for example, when a trill in the

right-hand voice part is superposed with a passage with

a repeated chord in the left-hand voice part (Figure 3(c)).

The matching of the left-hand chords becomes more am-

biguous since the long inter-chord IOI in the left-hand voice

part is interrupted by small IOIs of trill notes and can-

not be observed directly. Of course, we could consider

a higher-order Markov model to keep temporal informa-

tion from far past, but it is not viable in terms of compu-

tational efficiency for real-time processing. Again, if we

could preserve the voice structure and process notes in dif-

ferent voices separately, the problem seems much reduced.

Given the above problems as well as an observation that

the sequential regularity is more well-kept inside each voice

part [17, 18], which can be well described with an HMM,

one can expect a solution with a model in which poly-

phonic performance is described with multiple HMMs and

outputs of the HMMs are merged into the sequence of per-

formed notes.

3.2 Description of the model

The idea of the following model is to first consider an

HMM for each voice, or more precisely, each voice part

consisting of several voices, and combine all the HMMs

into one model by merging the outputs of the HMMs. The

crucial point is that each output observation is emitted from

one of the HMMs, and the other HMMs do not make a

transition at the time. The whole model is naively a prod-

uct model of HMMs, but it is shown to have efficient in-

ference algorithms according to this condition. As we will

discuss, some interactions between the HMMs can also be

introduced while keeping the computational efficiency.

In the following, we describe the merged-output model

of general HMMs. For simplicity, we mainly consider the

simplest case of two voice parts. Let a
(1)
ii′ and a

(2)
jj′ be tran-

sition probabilities of the two models, and let b
(1)
ii′ (o) and

b
(2)
jj′(o) be output probabilities with an output symbol o.

We consider the general case that output probabilities de-

pend on both the current and previous states, and that the

state spaces of the models can be different.

The state of the totality of the models is represented as a

pair (i, j). Introducing a variable η = 1, 2, which indicates

which of the model makes a transition at each time, the

state space of the merged-output model is indexed by k =
(η, i, j). When there is no interaction between the HMMs,

they are coupled only by a stochastic process of choosing

which of the HMMs transits at each time, which is assumed

to be a Bernoulli (coin-toss) process. Let the probability of

the Bernoulli process be α1 and α2 (α1+α2 = 1), and then

the transition of the merged-output model is described by

a probability

akk′ = P (k′|k) =

{

α1a
(1)
ii′ δjj′ , η′ = 1;

α2a
(2)
jj′δii′ , η′ = 2.

(4)

The output of the transition obeys the output probability of

the chosen HMM, and it is written as

bkk′(o) = P (o|k, k′) =

{

b
(1)
ii′ (o)δjj′ , η′ = 1;

b
(2)
jj′(o)δii′ , η′ = 2.

(5)

Eqs. (4) and (5) show that the merged-output model is itself

an HMM, which we call merged-output HMM. Each com-

ponent HMM is called a part HMM. We emphasize that

the current state of the non-transiting part HMM is kept

in the state label k′, and hence the voice-part structure is

preserved in the merged-output HMM.

We can also introduce some interactions between the part

HMMs as

akk′ =

{

α1(k)a
(1)
ii′ δjj′φ

(1)
kk′ , η′ = 1;

α2(k)a
(2)
jj′δii′φ

(2)
kk′ , η′ = 2,

(6)

bkk′(o) =

{

b
(1)
ii′ (o)δjj′ψ

(1)
kk′(o), η′ = 1;

b
(2)
jj′(o)δii′ψ

(2)
kk′(o), η′ = 2.

(7)

Here α1(k) + α2(k) = 1, and akk′ and bkk′(o) satisfy

proper normalization conditions. Applicational examples

of the interaction factors αη′(k), φ
(η′)
kk′ , and ψ

(η′)
kk′ (o) will
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Figure 4. Schematic illustration of merged-output HMM.

be discussed in Section 3.4. The merged-output HMM

can also be generalized for more than two voice parts, and

we can also consider higher-order Markov models for both

η and iη . A schematic illustration of the merged-output

HMM is given in Figure 4.

A similar HMM has been proposed in [23]. The most

significant difference is that only one of the component

HMMs transits and outputs at each time in the present

model, which requires an additional process of choosing

the component HMM at each time. Consequently, the way

one can introduce interaction factors is also different. As

we discussed above, the property is particularly important

for the present model to be effectively applied for poly-

phonic performance.

3.3 Inference algorithms and computational

complexity

The Viterbi, forward, and backward algorithms are typi-

cally used for inference of HMMs [24]. We discuss the

Viterbi algorithm as an example in the following, and sim-

ilar arguments are valid for the other algorithms. For an

HMM with N states in which all states are connected with

transitions, a Viterbi update requires O(N2) computations

of probability. First, suppose a two-part merged-output

HMM, and let I and J be the number of states of the

part HMMs. Then the number of states of the merged-

output HMM is 2IJ , and the computational complexity is

naively O(4I2J2). However, since the transition and out-

put probabilities of the merged-output HMM has a special

form in Eq. (6), it is reduced to O(2IJ(I + J)). In gen-

eral, the computational complexity for anNp-part merged-

output HMM is O(NpI1 · · · INp
(I1+· · ·+INp

)) instead of

O(N2
p I

2
1 · · · I

2
Np

), where Iη (η = 1, · · · , Np) is the num-

ber of states for each part HMM.

3.4 Merged-output HMM for score following

A performance model which preserves the voice-part struc-

ture can be obtained by applying the merged-output HMM

to the model described in Section 2. There are options in

what unit of voices to model as a part HMM in general. A

model with more than two voice parts may be used, but the

computational cost rapidly increases with the number of

voice parts. For piano performance, the voice asynchrony

is most evident between both hands, and we consider a

merged-output HMM of two voice parts, which basically

correspond to the left-hand and right-hand parts, in the rest

of this paper.

Each part HMM is constructed in the same way as in Sec-

tion 2, except that a score containing voices in each hand is

now used. However, the IOI output needs to be considered

carefully because it implicitly uses the time information of

the previous state, and the information is not kept in the

state of the merged-output HMM. In another view, the IOI

output is equivalent to consider an additional dimension of

time in the state space for each part HMM [15], and in the

case of two voice parts, the two dimensions of time cannot

be converted to a simple IOI output. In practice, efficient

algorithms such as the Viterbi algorithm cannot simply be

applied to find the optimal state, and some kind of sub-

optimization method must be used. We will come back to

this point in Section 4.

In the case of the performance model, the interaction fac-

tors of the merged-output HMM in Eq. (6) can be inter-

preted as follows. For example, when the performance

by the left hand happens to be behind the right hand, it

is more likely that the left hand will play the delayed note

sooner. This indicates that the current state of the merged-

output HMM may influence the probability of choosing the

transiting part HMM, which can be incorporated in αη′(k).
In real piano performances, the score positions where the

both hands are playing can rarely be far apart, and this can

be described by appropriate values of φ
(η′)
kk′ . Similarly, the

factor ψ
(η′)
kk′ (o) can represent the dependence of the out-

put probability on the relative score position between both

hands. Although the interaction factors can be important

to improve the score-following result, we do not make full

use of them in this paper, for simplicity.

4. SCORE-FOLLOWING ALGORITHM

Given the stochastic generative model of performance de-

scribed in the previous sections, the score following can be

done by finding the most probable hidden state sequence

(im)m given observations of performed notes (pm, tm)m.

To improve computational efficiency for real-time work-

ing, we need several refinements of the inference algo-

rithm. First, we need a sub-optimization method for treat-

ing the IOI output as mentioned in Section 3.4. For this,

the most probable arrival time at each state is memorized

and used for calculating the IOI output probability. This

makes the inference algorithm as efficient as the Viterbi

algorithm.

The second point in computational efficiency is the treat-

ment of arbitrary repeats and skips. Although the method
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Table 1. Error rates (%) of the score-following algorithms

with the temporal HMM and HMM without modeling or-

naments. Pieces indicate those described in the text.

Piece Onsets
Temporal

HMM
HMM w/o
ornaments

Couperin 1763 4.71 16.5

Beethoven No.1 17587 3.28 7.83

Beethoven No.2 5861 2.73 5.49

Chopin 16241 10.4 16.2

explained in Section 2.2 can be applied to the present model,

it is not sufficient since the state space is quite large. To

solve the problem, we set φ
(η′)
kk′ = 0 for k′ = (η′, i′, j′)

with far apart i′ and j′. This in effect reduces the con-

cerned state space significantly. Since transition paths re-

quired for large repeats and skips are also eliminated, we

reconnect separate states with a small uniform probability.

Note that the resulting model is no longer a merged-output

HMM, strictly, but they are almost identical in terms of

local transitions, for which the precise description of the

voice-part structure is most important.

Finally, even after the above refinements of the algorithm,

the complexity is large compared to the one-part HMM,

and it can be problematic for a very long score. Gener-

ally, there is no reason to use the merged-output HMM

for a passage where voice asynchrony and ornaments bring

no troubling reorderings of performed notes, which is the

most typical case. In practice, we can model such a pas-

sage within one of the part HMM, say, the first one, and use

the second part HMM, or possibly the third, fourth, etc.,

only for those passages where the voice-part-structured mod-

eling is necessary.

5. EVALUATIONS

5.1 Accuracy of the score-following algorithm

For the purpose of confirming the effectiveness of the score-

following algorithms, the accuracy of the algorithms is eval-

uated with piano performances by several players. First,

four pieces with frequently used ornaments were selected

to test the algorithm with the temporal HMM [15]. The

pieces are the first harpsichord part of Couperin’s Alle-

mande à deux clavecins (the first piece of the ninth ordre

in the second book of pièces de clavecin), the solo piano

part in the second movement of Beethoven’s first piano

concerto, the third movement of Beethoven’s second pi-

ano concerto, and the second movement of Chopin’s sec-

ond piano concerto. Each piece was played by two or three

pianists during practice and recorded in MIDI format.

Table 1 shows the results of score following in terms of

error rates calculated by comparing the estimation result

with the hand-matched result. We see that the algorithm

based on the temporal HMM with ornaments yielded lower

error rates than the one based on the HMM without mod-

eling ornaments. It is confirmed that the explicit modeling

of ornaments is indeed effective. Detailed analysis of the

Table 2. Error rates (%) of the score-following algorithms

by one-part temporal HMM and merging-output HMM.

The used test pieces are explained in the text.

Piece Onsets
Merged-output

HMM

One-part

HMM

1 2532 12.8 22.1
2 1226 11.3 23.3

results is provided in [15].

Next, the score-following algorithm by the merged-output

HMM is evaluated. As test pieces, we used the allegro part

of Chopin’s Fantasie Impromptu (piece 1), which include

a fast passage with 3 against 4 polyrhythms, and an étude

(piece 2) with many sustained trills played in superposition

with chords and arpeggios, which was composed for the

test purpose (part of it is shown in Figure 3(c) and 5(b)).

The pieces were played by two pianists, and the perfor-

mances were recorded in MIDI format during practice.

The results are shown in Table 2 and results for a score-

following algorithm by a one-part temporal HMM is also

shown for comparison. The error rates were calculated by

comparing the estimation result with the hand-matched re-

sult. There were many trill notes in piece 2, and the er-

ror rate was calculated with chords or arpeggios other than

trills since the score positions of trill notes are ambiguous

in nature. The results show that the error rates are reduced

by nearly 50% with the merged-output HMM, compared to

the case with the one-part HMM. As examples are shown

in Figure 5, there was a tendency that the merged-output

HMM estimated score positions more correctly when per-

formed notes were reordered across hands in piece 1, and

when repeated chords or arpeggios were played together

with sustained trills. On the other hand, the time necessary

for following repeats, which we call the following time,

were faster with the one-part HMM. For example, the av-

eraged following time in terms of notes for Fantasie Im-

promptu was 11.8 notes for the merged-output HMM and

7.0 notes for the one-part HMM, where repeats were de-

fined as a backward skip of more than one quater note.

The reason is probably that the model uses richer infor-

mation of simultaneous relations between both hands. The

relatively large error rates were due to frequent mistakes,

repeats, and skips in the prepared performances.

5.2 Computation time

We have confirmed that the score-following algorithm with

the merged-output HMM works in real-time for pieces with

roughly 1000 chords, which include the two test pieces,

in a PC with moderate computation power. However, it

seems hard for pieces with over a few thousands of chords,

which may be a drawback of the algorithm, given that the

algorithm with the one-part HMM can process pieces with

about 10000 chords in real-time [7]. In practice, we can of-

ten reduce computational cost by preparing the voice-part

structure of the score efficiently as we described in the last

paragraph of Section 4. The computational cost mainly

comes from treatment of arbitrary repeats and skips, and
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(a) A passage from Chopin’s Fantasie Impromptu.

(b) A passage with arpeggios and sustained trills.

Figure 5. Examples of score-following results. In each figure, the performed note onsets are written whose horizontal

positions are proportional to actual onset times. Notes that are incorrectly matched by the one-part HMM is indicated

in red color, and the matched results (resp. correct matchings) are indicated with red straight (resp. blue dashed) arrows.

Score-following results for these examples by the merged-output HMM were all correct.

one can also possibly reduce the cost by treating repeats

and skips with a simpler model, and use the merging-output

HMM for local and precise score-position estimation.

6. CONCLUSIONS

In this paper, we discussed the construction of a score-

following algorithm for polyphonic MIDI performance that

can handle reorderings of performed notes due to voice

asynchrony and widely stretched ornaments in polyphony,

particularly focusing on the background model of perfor-

mance which properly and efficiently capture such defor-

mations in performance. We first reviewed the temporal

HMM which is effective for performances with mistakes,

ornaments, arbitrary repeats, and skips, and discussed that

it is difficult to properly describe those deformations solely

with the model. Pointing out the importance of preserv-

ing the voice-part structure for capturing voice asynchrony

and ornaments in polyphony, we proposed a voice-part-

structured model in which outputs from several part HMMs

are merged, each of which being a temporal HMM. Several

refinements of the score-following algorithm to improve

computational efficiency are also explained. We confirmed

the effectiveness of the algorithm by evaluating its accu-

racy.

The key point of the merged-output HMM is that loose

inter-dependency between voice parts can be introduced

while the sequential regularity inside a voice part is pre-

served. Since such fabric of inter-dependencies and se-

quential regularities is common in polyphonic music, the

model can potentially be applied to other kinds of music

information processing in the domain of both composition

and performance. Discovering and extending applications

of the model is an important direction in the future. An

analogous model for audio signals is also attractive.

It is certainly interesting to use the score-following tech-
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nique for automatic accompaniment and other applications.

The voice information would also be important in generat-

ing musically successful expressive accompaniments and

reflecting performer’s musicality into them. We are cur-

rently working on these issues.
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