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ABSTRACT

This paper is an introduction to cage, a library for the Max

environment 1 including a number of high-level modules

for algorithmic and computer-aided composition (CAC).

The library, in the alpha development phase at the time

of writing, is composed by a set of tools aimed to ease

manipulation of symbolic musical data and solve typical

CAC problems, such as generation of pitches, generation

and processing of melodic profiles, symbolic processes in-

spired by digital signal processing, harmonic and rhyth-

mic interpolations, automata and L-systems, tools for mu-

sical set theory, tools for score generation and handling.

This project, supported by the Haute École de Musique in

Geneva, has a chiefly pedagogical vocation: all the mod-

ules in the library are abstractions, lending themselves to

be easily analyzed and modified.

1. INTRODUCTION

This article describes some of the main concepts and com-

ponents of the cage 2 library for Max, containing several

high-level modules for computer-aided composition (CAC).

Some of these modules have already been discussed in [1]

(in French); in this paper we complete the overview of

the library, and provide a more comprehensive view on its

goals.

cage is entirely based upon the bach: automated com-

poser’s helper library, which is developed by two of the

authors [2, 3]. bach is a library of about 200 Max ex-

ternals and abstractions, aimed to bring within Max a set

of ‘primitives’ for the manipulation of symbolic musical

data, along with some GUIs for their graphical represen-

tation and editing. Data within bach are invariantly repre-

sented through specialized uses of a generic data structure,

the llll (‘Lisp-like linked list’), which as the acronym sug-

gests is essentially a tree structure in the form of a nested

list, directly inspired by the Lisp programming language.

Subsequently, most bach modules are tools for low-level

manipulation of lllls (performing operations such as rota-

tions, substitutions or retrieval of single elements) or for

more complex but conceptually basic operations such as

1 http://cycling74.com
2 www.bachproject.net/cage
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constraint solving or rhythmic quantization. Differently

from bach, cage modules in general perform higher-level

tasks, with a compositional rather than strictly technical

connotation (e.g. melodic material generation, or compu-

tation of symbolic frequency modulation). Still, some ba-

sic mechanisms and principles are inherited by cage from

bach, including the fact that communication between the

different modules happens mostly by means of lllls.

Two main criteria have informed the conception of the

library.

The first is the idea at the very root of cage itself: building

a library of ready-to-use modules, implementing a num-

ber of widely used CAC processes. As a consequence, a

part of the library is openly inspired by libraries already

existing for other programs (namely the Profile [4] and

Esquisse [5, 6] libraries for Patchwork, which have been

subsequently ported to OpenMusic); on the other hand, an-

other part of the library is addressed to problems and prac-

tices typically associated with real-time interaction (such

as cage.granulate, the symbolic granulation engine).

Secondly, the project has a strong pedagogical connota-

tion 3 : all the modules of the library are abstractions, lend-

ing themselves to be easily analyzed and modified. It is not

difficult, for the user wishing to learn how to treat musical

data, to copy, edit or adjust the patches to his or her own

needs. In this regards, all the tools in the library are in-

trinsically ‘open source’: although each implemented pro-

cess is conceived for a typical, somehow standard usage,

the advanced user will easily start from these abstractions

and modify their behavior. This pedagogical connotation

is completed by the fact that the library will be thoroughly

documented by help files, reference sheets and a collection

of tutorials.

2. A REAL-TIME APPROACH TO

COMPUTER-AIDED COMPOSITION

The real-time paradigm deeply influences the nature itself

of the compositional process. For example, composers

who work in the domain of electro-acoustic music often

need the computer to react immediately to each parameter

change. Similarly, composers working with symbolic data

may wish the computer to adapt within the shortest delay

to a new configuration of the data themselves. cage’s un-

derlying paradigm is ultimately the same that informed the

bach library: creating and editing symbolic musical data

is not necessarily an out-of-time activity, but it follows the

temporal flow of the compositional process, and adapts to

3 The cage library is supported by a grant from HES-SO.
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it (see also [3, 7, 8]).

3. COMPOSITION OF THE LIBRARY

The library is composed by several families of modules. In

the following paragraphs we will briefly describe them, in

order to give an idea of the scope of the work. Of course,

there is no ambition of completeness in the choice of the

processes that have been implemented. Computer-aided

composition is a vast domain, and practices are personal

and specific to each single composer more often than not.

Still, it seems to us that some general typologies of ap-

proaches, as well as some commonly used specific oper-

ations, can be discerned. We attempted to exemplify at

least some of them, hoping that our work will be useful

to composers wishing to implement their own individual

processes and operations.

3.1 Pitch generation

The first family of modules that will be discussed is

aimed at generating pitches according to different crite-

ria: cage.scale and cage.arpeggio can generate respec-

tively scales and arpeggios within a given pitch range. The

types of chords and scales can be expressed either through

symbolic names or midicents patterns. Scale and chord

names can contain quartertones and eight-tones as well.

cage.harmser generates harmonic series starting from a

given fundamental, with an optional distortion factor.

Other modules generate pitches on a one-by-one basis:

cage.noterandom generates random notes from a given reser-

voir, optionally according to different predefined probabil-

ity weights, which can be defined, for instance, through

cage.weightbuilder; cage.notewalk generates an aleatory

path in a given reservoir, according to a list of allowed

steps. In both cases, the result of the operation is meant to

be used in combination with bach.transcribe, which will

transcribe the incoming stream of notes in real time. Also,

in both cases the randomly chosen element can be vali-

dated by the user via a lambda loop. 4

3.2 Generation and treatment of melodic profiles

A family of modules is specifically aimed at generat-

ing and treating melodic profiles, in a similar fashion to

the Profile library in OpenMusic and PatchWork [4]. A

breakpoint function can be converted in a sequence of

pitches (a melodic profile) through cage.profile.gen. This

profile can be edited in different ways: it can be com-

pressed or stretched (with cage.profile.stretch), reversed

(with cage.profile.mirror), approximated to an harmonic

grid or a scale (with cage.profile.snap), forced into a pitch

range (with cage.profile.rectify), randomly perturbed (with

4 A lambda loop in bach and cage is a symbolic feedback config-
uration: objects supporting this behavior have one or more dedicated
‘lambda’ outlets returning data for acceptance or modification; these data
are processed in a specific section of the patch whose resulting value is
fed back into a dedicated ‘lambda’ inlet of the first object. This configu-
ration is often employed within bach in order to define custom behaviors
for specific operations (e.g. a sorting criterium, or a process to be applied
to every element of an llll). The name ‘lambda’ hints to the fact that this
configuration somehow allows to pass a section of a patch as a pseudo-
argument of an object. Indeed, this is nothing more than an allusion: there
is no lambda calculus or interpreted functions involved in the process.

cage.profile.perturb) or filtered (with cage.profile.filter).

Profile filtering is achieved through application of an av-

erage, median or custom filter, the latter being definable

by the user through a lambda loop (see also Fig. 1).

Figure 1. A melodic profile is built from a function de-

fined inside a bach.slot object and sampled over 20 points.

Then, the profile is filtered by a process expressed through

a lambda loop, which operates on three-note windows;

each window is replaced by a single value, the average of

the first and last element of the window itself weighted by

the weights (1, 2). This filtering process is repeated twice.

It can be observed that, because of the windowing, the re-

sult contains four notes less than the original sampling.

3.3 Processes inspired by electro-acoustic practices

cage contains a group of modules dedicated to symbolic

emulation of processes belonging to the domains of sound

synthesis and digital audio processing.

cage.freqshift is a tool allowing transposition of materi-

als linearly on the frequency axis, as in single-sideband

ring modulation. Because of the strict similarity of the two

processes, cage.pitchshift is considered as belonging to the

same category, although a pitch shifting operation applied

to musical notation is just a simple transposition.

cage.rm and cage.fm deal respectively with ring mod-

ulation and frequency modulation. The idea underlying

these techniques, widely employed by composers associ-

ated with the spectral movement, is the following: starting

from two chords (a ‘carrier’ and a ‘modulating’ chord),

whose notes are considered as a simple sine tones, the

spectrum obtained by modulating with each other these

two groups of sinusoids is calculated. Each component

of the resulting spectrum is then represented as a note of

the resulting chord. This operation requires a number of

approximations and trade-offs which can make its result

significantly different from the actual product of the cor-

responding audio treatment: nevertheless, it is a very ef-

fective approach in generating rich harmonic families from
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simple materials, hence its compositional interest. Although

the direct inspiration for cage.rm and cage.fm is taken from

the Esquisse library [5, 6] for OpenMusic, their operational

paradigm and some computational details are different. In

particular, being conceived to work in time, these two mod-

ules can accept not only simple chords, but also chords

sequences representing variations of ‘carriers’ and ‘modu-

lating chords’ in time. In this case, the process will return a

new score containing the result of these variations in time

(see Fig. 2). For what concerns the actual internal com-

putation, the two modules take into account an estimate of

the phase oppositions generated by the modulation, and the

relative component elision, differently from what happens

in the Esquisse library. For this reason, the results of the

same process in the two environments can be significantly

different.

Figure 2. An example of frequency modulation of two

scores, achieved through the cage.fm abstraction. The ‘car-

rier’ and ‘modulating’ are on top, the result below. The

note velocity (treated as the amplitude of the correspond-

ing sinusoidal components) is represented in grayscale.

cage.virtfun returns one or more estimates of the virtual

fundamental frequency of a chord, as perceived for exam-

ple at the output of a waveshaping process. The implemen-

tation is very simple: the sub-harmonic series of the lowest

note of the chord is traversed until a frequency whose har-

monics approximate all the notes of the given chord, within

a given tolerance, is found. cage.virtfun can also be applied

to a sequence of chords in time; in this case, the result will

be the sequence of the virtual fundamentals. On the other

hand, the numerical operation performed by cage.virtfun

has a broader range of applications: it can be considered

a computation of an approximate greatest common divisor

of a set of numbers. As such, it is called for example by

cage.accrall to establish a ‘reasonable’ minimal rhythmic

unit in a non-measured score.

cage.delay and cage.looper extend the concept of delay

line with feedback in the symbolic domain. Their aim is

creating loops and repetitive structures in which the mate-

rial can be altered at each pass through a lambda loop. The

difference between the two lies in the musical unit that is

passed to the lambda loop: a single chord in cage.delay, a

whole section of the score in cage.looper. In both cases,

the delay time itself can be changed for each repetition. In

principle there is no limitation to the richness of the pro-

cesses that can be applied to the material in the lambda

loop: the musical result can therefore be much more com-

plex than a simple iteration.

cage.cascade∼ and cage.pitchfilter extend the principle

of filtering to the symbolic domain. The former applies

a chain of two-pole, two-zeros filters to a score, as the

biquad∼ and cascade∼ Max objects, by emulating the ac-

tual frequency response of a digital IIR filter. The latter

operates directly on pitches, rather than frequencies, by ap-

plying to a score a filter defined by a breakpoint function

obtained for example from a function or a bach.slot object.

In both cases, the MIDI velocity of each note is modified

according to the filter response, and notes whose velocities

fall below a given threshold are removed. Interpolation be-

tween different filter configurations in time is also possible

(see fig. 3).

Figure 3. An example of dynamic filtering of a score ob-

tained through cage.cascade∼ driven by a dynfilter slot in a

bach.slot object. Whenever the filter parameters are edited

through the interface, the result is automatically updated in

real time.

cage.granulate is a symbolic granulation engine. The pa-

rameters of the granulation are the same as in the corre-

sponding electro-acoustical process: the time interval be-

tween two grains, the size of each grain, the beginning and

the end of the temporal region from which the grain must

be extracted. Based upon these parameters, cage.granulate

fills in real time a bach.roll object connected to its outlet.

3.4 Harmonic and rhythmic interpolation,

formalization of agogics

The cage.chordinterp abstraction performs a linear harmonic

interpolation between a set of chords, through the assign-

ment of different weights to each of them. In the same
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way, a rhythmic interpolation can be obtained through the

module cage.rhythminterp.

cage.timewarp on the other hand performs a temporal dis-

tortion of a score, obtained through a function (in the usual

form of a lambda loop) that is applied to the onset of each

discrete event of the score. Among the other things, this

provides a flexible way to perform any kind and shape of

rallentando or accelerando through the definition of the ap-

propriate function - a task that is eased by the cage.accrall

abstraction, allowing to express agogics through a set of

high-level parameters such as total resulting duration or

starting and ending speed.

Figure 4. An example of temporal distortion performed

through cage.timewarp. The function in the lambda loop

associates time in the original score (above), represented

on the x-axis, to time in the resulting score (below), repre-

sented on the y-axis.

3.5 Automata, L-systems, etc.

The cage.chain abstraction implements one-dimensional

cellular automata and L-systems. It performs rewrites of

a given list according to a set of rules defined by the user

through either messages or a lambda loop. Substitutions

can take place on single elements (e.g. a certain letter or

note is substituted by a list of letters or notes), or overlap-

ping sequences of elements with a fixed length (e.g., each

couple of elements is replaced by one or more different

elements); in the latter case, cage.chain will manage the

behavior at the boundaries according to the values of some

specific attributes (pad, align). In summary, this module

makes it easy to build cellular automata, or fractals by sub-

stitution.

cage.life deals with two-dimensional cellular automata

(the most famous example being John Conway’s ‘game of

life’). The rules for these automata are defined through a

lambda loop. The order of the substitution sub-matrices

can be defined by the user as well.

An abstraction closely related to the two previous ones

is cage.lombricus, implementing a way to build rule-based

generative systems. The module accepts a set of starting

elements grouped into families, with a weight assigned to

each family. The task of the abstraction is creating a se-

quence of an arbitrary number of elements, trying to match

the relative number of occurrences of elements of each

family to the weight associated to the family itself. At run-

time, the lambda loop of the abstraction is fed with pro-

posals of elements to be chained to the existing sequence,

along with the whole sequence built so far; each proposal

can be refused, or accepted and assigned a score according

to custom-definable rules: among the accepted elements,

a ‘winner’ will be chosen according to the score and the

weights of the family to which it belongs. If at some point

a suitable element cannot be found, the abstraction is capa-

ble to backtrack on the sequence built so far, and substitute

a previously chosen element with a different one with a

lower score but potentially allowing a longer chain to be

built. It should also be pointed out that the element needs

not to be copied literally in the resulting sequence: for ex-

ample, the user might want to provide the system with a

set of intervals as starting elements, and obtain a melodic

sequence at the end of the process: the substitution can

be performed within the lambda loop described above. In

summary, the underlying mechanism of the cage.lombricus

abstraction shares some features of cellular automata and

L-systems on one hand (in particular, a rule-based con-

structive behavior allowing rewrites), and constraint satis-

faction problems on the other (the ability to make choices

according to weights and the backtracking behavior), with-

out strictly belonging to either category. Although this pro-

cess may appear cumbersome, a thorough investigation on

our own compositional practices as well as those of other

composers (and firstly Michaël Jarrell’s) suggested us that

it is well-suited to model a wide array of real-life musical

formalization techniques.

3.6 Musical set theory tools

A group of modules in cage deals with pitch repre-

sentations typical of the set theory: cage.chroma2pcset

and cage.pcset2chroma convert between pitch class sets

and chroma vectors (see [9]); cage.chroma2centroid and

cage.centroid2chroma convert between chroma vectors

and spectral centroids, the latter being obtained through

the transform described by Harte and Sandler [10]. Go-

ing from chroma vector to centroid causes a loss of infor-

mation, therefore the conversion is not univocal: a single

chroma vector, among all those having the input vector as

their centroid, is returned.

3.7 Scores

cage contains a set of modules for the global processing

of scores: cage.rollinterp interpolates between the con-

tents of two bach.roll objects, according to an interpolation

curve or a single value in the case of static interpolation.
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Figure 5. The bottom bach.roll shows the sequence of

notes produced starting from the top bach.roll, and by

applying three steps of the substitution rule given in the

lambda loop. Such substitution rule states appends to every

couple of overlapping notes (order is 2) the same couple

transposed by one octave plus one semitone. For instance,

at the first step, the couple C4 D4 is substituted with C4

D4 C#5 Eb5, and the couple D4 E4 is substituted with D4

E4 Eb5 F5, yielding the sequence C4 D4 C#5 Eb5 D4 E4

Eb5 F5; the following steps do the same with the result ob-

tained from the previous step. cage.chain then outputs the

whole sequence of steps; only the ending one is displayed.

cage.envelopes represents a family of functions synchro-

nized to the total duration of a score, aiding real-time edit-

ing of the score with respect to the values of the curves at

each instant. cage.scissors divides the score contained in a

bach.roll object according to vertical (time) and horizontal

(voice) split points, and returns a matrix containing the re-

sulting score excerpts. cage.glue performs the opposite op-

eration: fills a single bach.roll with the contents of a matrix

of smaller scores, according to the temporal and voice dis-

position implicit in the matrix itself, or to an explicitly set

disposition. cage.ezptrack takes a sequence of chords and

attempts to reconstruct musical voices, in a similar way to

what partial trackers do with harmonic analysis data. (see

Fig. 6).

3.8 SDIF files support

A set of modules in cage is designed to ease the reading

and writing of SDIF files [11, 12]. This family contains

sub-families for some of the most common analyses and

descriptors, namely fundamental frequency, peaks, partial

tracking, markers.

Starting from version 0.7.4, bach supports reading and

writing SDIF files through the bach.readsdif object, a low-

Figure 6. Partial tracking on sequences of chords can be

quickly and easily be obtained via cage.ezptrack. Here,

the pitch threshold to link two consecutive peaks is 50mc.

Notice the presence of pitch breakpoints in at the end of the

lower bach.roll, due to the fact that at the end of the upper

roll some notes were not perfectly snapped to the semitone

grid.

level tool reading all the information contained in a SDIF

files and structuring it into an llll, and the corresponding

bach.writesdif object, allowing to write SDIF files start-

ing from their llll representation. This representation is

complete, meaning that feeding the output of bach.readsdif

into bach.writesdif produces an SDIF file perfectly equiva-

lent, if not identical, to the original one. On the other hand,

this very completeness makes the representation itself dif-

ficult for the user to manipulate.

For this reason, cage includes a set of modules imple-

menting a number of basic operations upon the contents of

SDIF files. Some directly convert SDIF data into bach.roll

syntax, for instance cage.sdif.ptrack.toroll (see Fig. 7).

Other abstractions rearrange SDIF data in an easily acces-

sible form. As an example, cage.sdif.fzero.unpack looks

for 1FQ0 (fundamental frequency estimate) frames and out-

puts onsets, frequencies, confidences, score and amplitudes

from different outlets as lllls structured by stream. Two ab-

stractions deal with partial tracking (cage.sdif.ptrack.resolve

and cage.sdif.ptrack.assemble), allowing to switch between

a time-wise and an index-wise representation of the data.

In general, we did not consider the writing of SDIF files

starting from symbolic data a common usage scenario, with

one possible exception: markers. For this reason, the only

abstraction providing a direct translation from a notation

object to a SDIF llll is cage.sdif.markers.fromroll, transfer-

ring into it all the markers of a bach.roll object, each with

its time position and name.

Proceedings ICMC|SMC|2014          14-20 September 2014, Athens, Greece

- 312 -



Figure 7. A SDIF partial tracking analysis is imported in

a bach.roll via cage.sdif.ptrack.toroll. The lambda loop is

used to define a custom velocity mapping (if no lambda

loop is provided, a default mapping will be used).

3.9 Audio rendering

In addition to the previously described proper CAC tools,

cage contains a set of utilities aimed to make quick pro-

totyping and verification of musical solutions easier. In

particular, two modules of the cage library perform audio

rendering of bach scores: cage.ezaddsynth∼ (a basic addi-

tive synthesis engine) and cage.ezseq∼ (a basic sound file

sampler). Like bach.ezmidiplay, both are designed to be

directly connected to the ‘playout’ outlet of the bach.roll

and bach.score objects.

The additive synthesis engine addresses the need of a

quick-and-dirty audio rendering, overcoming the limita-

tions of MIDI instruments: this may be useful for exam-

ple when working with non-standard microtonal grids, or

when amplitude envelopes, panning or glissandos cannot

be ignored. Envelopes should all be defined inside slots. 5

The sampler addresses the need of using bach.roll and

bach.score as ‘augmented sequencers’: cage.ezseq∼ takes

into account file names, amplitude envelopes, panning, play-

back speed, audio filtering, playback starting time (all de-

fined inside slots). cage.ezseq∼ is also capable to preload

audio files, if a given directory is assigned. If requested,

the cage.ezseq∼ module can transpose each sample with-

out temporal alteration (via the gizmo∼ Max object) ac-

cording to the pitch of the associated note.

4. CONCLUSIONS

At the time of writing, the library is in an ongoing phase

of development. A public alpha version will be available

in May 2014: not all the features might be implemented

at this point, and the documentation will not be complete.

Nonetheless, most modules will already be functional. The

first complete version of the library will be made avail-

able in October 2014, on the occasion of a public pre-

sentation that will take place in Geneva. The library will

be freely downloadable. Starting from the academic year

2014-2015, cage will be taught within the courses of com-

position and electronic music at the Haute École de Musique

in Geneva and in a number of partner institutions.

5 Slots are metadata of various kind associated to individual notes (see
[2]).
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