
Representation of Musical Computer Processes

Dominique Fober, Yann Orlarey, Stéphane Letz

GRAME

Centre national de création musicale

Lyon, France

fober@grame.fr orlarey@grame.fr letz@grame.fr

ABSTRACT

The paper presents a study about the representation of mu-

sical computer processes within a music score. The idea is

to provide performers with information that could be use-

ful especially in the context of interactive music. The paper

starts with a characterization of a musical computer pro-

cess in order to define the values to be represented. Next

it proposes an approach to time representation suitable to

asynchronous processes representation.

1. INTRODUCTION

Throughout the last decades, the development of electronic

and digital technologies, including sound production, ges-

ture captation, has led to a musical revolution and to the

emergence of new genres firmly established in the cul-

ture and musical imagination. From these evolutions, new

needs have emerged, notably in terms of music notation

and representation [1]. Raised by artistic forms like inter-

active music or live coding, questions related to dynamic

notation or musical process representation are taking a sig-

nificant importance. With interactive music, the cohabita-

tion between static scores and interaction processes is to

be organized. With live coding, the border between pro-

grammation and score tends to be blurry [2]. Today, the

object of the musical notation needs to be redefined to take

account of the new dimensions of the current artistic prac-

tices.

This paper addresses the dynamic representation of pro-

cesses and their states in the single graphical space of the

musical score.

The musical context gives a specific dimension to the

problematic of a process representation, because we are

interrested in its current state, but also in a set of time or-

dered states, including futur possible states. Usability con-

straints require these state to be readable in real-time, i.e.

in the time of the score performance, and to be a guide for

the interaction choices of the performer.

The objective of the study is to integrate the representa-

tion of processes to INScore [3, 4], an environment for the

design of augmented interactive music score.

Copyright: c©2014 D. Fober et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

We will first present existing approaches in the domain of

process representation, with a viewpoint centered on musi-

cal applications. We will next define the elements to char-

acterize an interaction process. We will finally propose a

model of process representation, not in the graphic space

- that remains the score domain and the composer respon-

sibility - but in terms of communication between the tools

involved in a piece realization.

2. EXISTING APPROACHES

Generally provided with operating systems, there are tools

to visualize the system state in terms of resources usage:

CPU, memory, network bandwith, etc. (figure 1). In the

musical domain, tools for music computation are propos-

ing similar representations: the system state may include

both the application resources usage and the system pa-

rameters, generaly reflecting audio processes.

Figure 1. Visualization of the system state under Windows

In the musical domain, PureData [5] and Max/MSP [6]

are among the applications frequently used for interactive

music design. PureData provides rough tools to represent

the system state (figure 2b). Max/MSP includes an audio

resources monitor (figure 2a) that gives also the value of

the audio setup, like sampling rate, I/O vector size, etc.

In the context of interactive music, the current position in

the score is part of the system state but the notion of score

is missing win tools like Max/MSP or PureData. Exten-

sions like Bach [7] or MAXScore [8] allow to introduce the

music notation in Max/MSP, but without taking account of

the musical processes representation.

With environments like Open Music [9] or i-score [10], a

process is viewed as an opaque box. Its temporal dimen-

sion is taken into account and a cursor locates its current

time position, but without more information about the pro-

cess activity.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1604 -

mailto:fober@grame.fr
mailto:orlarey@grame.fr
mailto:letz@grame.fr
http://creativecommons.org/licenses/by/3.0/

b) Pure Dataa) Max/MSP

Figure 2. Visualization of the system state with Max/MSP

and Pure Data

That’s in the domain of live coding and interactive sys-

tems that the approaches look the more advanced. Thor

Magnusson is developping a thought and tools that tend to

narrow programming and music score [11, 2]. Ge Wang

proposes also an approach based on code [12] as factor of

instrumental expression for the live coding, with the pro-

gramming language Chuck [13]. This idea is notably im-

plemented in the audio programming environment The Au-

dicle [14] where different visualizations of the code and of

the system activity are proposed in an original and exten-

sible approach(figure 3).

a

b

c

d

Figure 3. Visualization of the system state in the Audi-

cle : a) waveform and spectrum, b) temporal information

per thread, c) threads activity in a graphic form, d) in a

detailled textual form.

Another approach of the visualization is centered on the

listener, aiming at improving the perception using graph-

ical information in a live coding context [15] or to make

the mechanism of electronic instruments perceptible [16]

(figure 4).

The main limitation of all these approaches is to be par-

tial and centered on the applications that propose them. In

addition, there is no emergent general model and the inter-

operability between the tools is not taken into account.

Figure 4. Visualization electronic instruments mechanism.

3. CHARACTERIZATION OF A MUSICAL

COMPUT PROCESS

We will consider music computer processes as resulting

from the music composition and thus, as being part of the

music score. From this viewpoint, a process takes place

in time: it can be passed, present or futur. We will talk of

active process for a process that is present, and of inactive

process for a past or futur process.

The temporal status will determine different ways to char-

acterize a process: the properties of a process will be dif-

ferent whether active or inactive. Similarly, properties of a

past process will differ from those of a futur process, which

date and duration may be undefined, relative to an external

event.

The characterization of a musical computer process we

will be based on three types of information, classified ac-

cording to their change rate:

• a static state: represent the information that doesn’t

change (e.g. the parent process) or that may change

at a low rate (e.g. the sampling freq.)

• a dynamic state: represents the information that changes

over time and depend on the process execution (e.g.

the CPU usage)

• a temporal state: the process start date and its end

date or duration. These properties may be undefined

in an interactive context.

3.1 Static state

A process static state is made of the set of information that

are invariant or that change at a low rate. This state is com-

pletely defined for an active process. It reflects the last

active state for a passed process. For a futur process, it

may indicate the first state to activate when it is known in

advance.

For a generic process, the state may include:

- its parent process

- its status (active — inactive)

- its computation mode (vectorization, parallélization,...)

- ...

For an audio process, the state may include:

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1605 -

- the I/O buffers size

- the sampling rate

- the I/O devices

- the driver

- ...

For any process, the state may include the value of the

control parameters. For example: delay and feedback val-

ues of an echo.

The set of static properties is process dependant.

3.2 Dynamic state

The dynamic state of a process is closely linked to its ac-

tivity and characterizes an active process.

For a generic process, the state may include:

- the CPU usage

- the threads count

- the memory usage

- ...

The result of a process computation may also reflect its

state, e.g. the values of a process that computes a signal.

The dynamic state may include indications on the current

computation, e.g. an index of confidence for a process that

is doing pitch recognition or that is doing score following.

The set of dynamic properties is process dependant.

3.3 Temporal state

In a musical context and especially for interactive music

[17], the temporal state of process (i.e. its start date, its end

date or its duration) may be partially or totally undefined.

In case of an active process, the start date is known but

its end may depend on another process and/or an external

event. For a future process, both the start and end dates

may be undefined.

In addition, the way to represent dates and durations may

lead to undefined results, e.g. when expressed in a time

relative to a tempo that is undefined.

In a musical context, this temporal information is criti-

cal for the performance of a piece and thus, require to be

represented whatever its status.

The temporal properties are common to all the processes.

4. REPRESENTING THE STATE OF A MUSICAL

COMPUTER PROCESS

We propose a format to represent the state of a musical pro-

cess, suitable to inter-applications collaboration, allowing

to dissociate a process involved in a piece computation and

its graphic representation, that could be viewed as part of

the music score.

We define the state of a process as a set of values that

characterise this process at a given time. We’ll talk of prop-

erty to refer to one of these values. To represent a process

state, this process should be able to describe its properties

set.

4.1 Definition of a property

A process property is the association of an identifier and a

value that may change over time. The value may be a num-

ber or a vector of values: e.g. a space position is defined

by 3 values.

The value of a property may be bounded by an interval.

Finally, the frequency of a property variation may also be

defined.

The type of the values is in:

- int : for an integer number

- float : for a floating point number

- bool : for a boolean

- probability : the value is a probability. By convention,

it will be expressed by floating point numbers in the

interval [0, 1].

Values of a vector type are defined by a list of types.

property : ident type [range freq]

ident : string

| url

freq : integer

type : ’int’

| ’float’

| ’bool’

| ’probability’

| (vector)

vector : type

| vector type

range : value value

value : int

| float

| bool

| (vlist)

vlist : value

| vlist value

Figure 5. A property definition

By convention, the frequency defines the rate of a value

variation: it indicates a number of changes by second. The

value 0 denotes constant values. When the variation rate is

unknown, the frequency should be omitted.

4.2 Declaration of a properties set

A process state is defined by a list of properties (figure 6).

In order to represent this state, a process must be able to

communicate a description of its state.

process-state : states

states : property

| states property

Figure 6. Description of a process state

JSON [18] could be used to declare the properties of a

process. The figure 7 gives the example of a FAUST [19]

process which state include the value of the control param-

eters as well as the computed signal.

4.3 A property state

The state of a property will be send as a pair associating an

identifier and its value.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1606 -

{

"process": "karplus",

"states": [

{

"ident": "excitation",

"type" : "float",

"range": [{"min": 2},{"max": 512}]

},

{

"ident": "play",

"type" : "bool"

},

{

"ident": "level",

"type" : "float",

"range": [{"min": 0},{"max": 1}]

},

{

"ident": "attenuation",

"type" : "float",

"range": [{"min": 0},{"max": 1}]

},

{

"ident": "duration",

"type" : "float",

"range": [{"min": 2},{"max": 512}]

},

{

"ident": "signal",

"type" : "float",

"range": [{"min": -1},{"max": 1}],

"freq" : 44100

}

]

}

Figure 7. A FAUST process described using JSON

{ "excitation" : 124 }

Figure 8. Value of the excitation of the process

karplus using the JSON format

When a list of values is associated to an identifier (figure

9), they could be interpreted in the context of the property

frequency: when a frequency is defined, the set of values

takes the corresponding duration.

{ "signal" : [-0.2, 0.1, 0.23, -0.05,

-0.01, 0.8, 0.8, 0.02, -0.5] }

Figure 9. Values of the signal computed by the process

karplus

OSC [20] may be used to transmit a state. In this case,

the OSC address could be used as identifier (figure 10)

4.4 Temporal state representation

All the processes have two common properties: a start date

and a duration (or end date). These properties may be un-

defined (e.g. for a futur process), or partially defined (e.g.

for an active process which end date is undefined).

In the context of interactive music, an undefined date cor-

responds to an external event. For example,

- a process start or end may correspond to the start or

end of an improvisation sequence,

/karplus/signal -0.2 0.1 0.23 -0.05 -0.01

0.8 0.8 0.02 -0.5

Figure 10. Values of the signal transmitted via OSC

- a process mey be conditionally triggered, e.g. when a

specific note sequence is played or in case of silence.

More generally, the scheduling of such processes may be

described in terms of Allen relations [21], relatively to the

events which they depend on. We will talk of event based

date or duration to refer to these undefined dates or dura-

tions.

The properties of a process temporal state are described

by a start and an end or duration (figure 11). The values

can be expressed as time or under event form.

process-temporal-state

: begin [end | dur]

begin : time | event

end : time | event

dur : time | event

Figure 11. Properties of a process temporal state

4.4.1 Events representation

Even when a process has an event based date, we would

like to represent it, at least in an approximative manner. In

order to provide support for such representation, an event

based date is defined as a triplet T = (tleft, t, tright),
associated to a confidence level P and followed by an op-

tionnal label (figure 12).

T is such that tleft 6 t 6 tright. T defines a realisa-

tion interval [tleft, tright] and a possible realisation date t.

The confidence level [tleft, tright] represents the realisa-

tion likelihood of the event at the date t. It is expressed as

a floating point value in the interval 0, 1.

event : timeset confidence [label]

timeset : (leftbound, expected,

rightbound)

leftbound : time

expected : time

rightbound : time

Figure 12. Approximation of event based time.

This kind of representation is intermediate between the
description of Allen relations and classical dating. As an
example, the following relation A m (B si (C fi D))

expressed in terms of Allen relations (figure 13) could be
expressed in a semi-instanciated way as follows:

{ "process": "A",

"start": "0/1",

"dur": ["1/4", "1/2", "1/1", 0.7]

}

{ "process": "B",

"start": ["1/4", "1/2", "1/1", 0.7],

"dur": "1/4"

}

{ "process": "C",

"start": ["1/4", "1/2", "1/1", 0.7],

"dur": ["1/2", "3/4", "1/1", 0.7]

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1607 -

}

{ "process": "D",

"start": ["0/1", "1/2", "1/2", 0.8],

"end": ["3/4", "5/4", "3/2", 0.5]

}

A

B

C

D

Figure 13. Relations between 4 processes: B and C start

with the end of A, D ends with C.

Note that the start date of the process D expresses a con-

straint on the duration, that should be greater or equal to a

whole note.

One of the possibilities for the representation may con-

sist to use a color gradient to account for uncertainties, as

illustrated in figure 14, that is based on the example above.

A

B

C

D

0 1 2 3 4 5 6 7 8 9

Figure 14. Representation of the processes A, B, C, D,

using color gradients to account for uncertainties.

5. CONCLUSION

We propose a simple description of a musical process state.

This description is disconnected from any representation

format or communication protocol. However, examples

using JSON or OSC are given because their simplicity of

implementation was consistent with the proposed descrip-

tion of musical processes.

The critical problem of the representation of event based

time is treated using a probabilistic semi-instantiated ap-

proach. This solution is less general than a description

in terms or Allen relations, but it avoids solving the cor-

responding constraints to visualization applications, while

realization systems have already to do it.

Acknowledgments

This research has been conducted in the framework of the

INEDIT project that is funded by the French National Re-

search Agency [ANR-12-CORD-009].

6. REFERENCES

[1] J. Freeman, “Bringing instrumental musicians into in-

teractive music systems through notation,” Leonardo

Music Journal, vol. 21, no. 15-16, 2011.

[2] T. Magnusson, “Algorithms as scores: Coding live

music,” Leonardo Music Journal, vol. 21, pp. 19–23,

2011.

[3] D. Fober, Y. Orlarey, and S. Letz, “Inscore – an envi-

ronment for the design of live music scores,” in Pro-

ceedings of the Linux Audio Conference – LAC 2012,

2012, pp. 47–54.

[4] D. Fober, S. Letz, Y. Orlarey, and F. Bevilacqua,

“Programming interactive music scores with inscore,”

in Proceedings of the Sound and Music Computing

conference – SMC’13, 2013, pp. 185–190. [Online].

Available: fober-smc2013-final.pdf

[5] M. Puckette, “Pure data: another integrated computer

music environment,” in Proceedings of the Interna-

tional Computer Music Conference, 1996, pp. 37–41.

[6] ——, “Combining Event and Signal Processing in the

MAX Graphical Programming Environment,” Com-

puter Music Journal, vol. 15, no. 3, pp. 68–77, 1991.

[7] A. Agostini and D. Ghisi, “Bach: An environment for

computer-aided composition in max,” in Proceedings

of International Computer Music Conference, ICMA,

Ed., 2012, pp. 373–378.

[8] N. Didkovsky and G. Hajdu, “Maxscore: Music no-

tation in max/msp,” in Proceedings of International

Computer Music Conference, ICMA, Ed., 2008.

[9] G. Assayag, C. Rueda, M. Laurson, C. Agon, and

O. Delerue, “Computer-assisted composition at ircam:

From patchwork to openmusic,” Comput. Music J.,

vol. 23, no. 3, pp. 59–72, Sep. 1999. [Online]. Avail-

able: http://dx.doi.org/10.1162/014892699559896

[10] A. Allombert, M. Desainte-Catherine, and G. As-

sayag, “Iscore: a system for writing interaction,” in

Proceedings of the Third International Conference on

Digital Interactive Media in Entertainment and Arts,

DIMEA 2008, 10-12 September 2008, Athens, Greece,

ser. ACM International Conference Proceeding Series,

S. Tsekeridou, A. D. Cheok, K. Giannakis, and J. Ka-

rigiannis, Eds., vol. 349. ACM, 2008, pp. 360–367.

[11] T. Magnusson, “The ixiquarks: Merging code and gui

in one creative space.” in Proceedings of the Interna-

tional Computer Music Conference, 2007.

[12] G. Wang and P. R. Cook, “On-the-fly programming:

Using code as an expressive musical instrument,” in

Proceedings of the International Conference on New

Interfaces for Musical Expression, 2004, pp. 138–143.

[13] ——, “Chuck: a concurrent, on-the-fly audio program-

ming language,” in Proceedings of International Com-

puter Music Conference, ICMA, Ed., 2003, pp. 219–

226.

[14] ——, “The audicle: a contextsensitive, on-the-fly au-

dio programming environ/mentality,” in Proceedings of

the International Computer Music Conference, ICMA,

Ed., 2004.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1608 -

fober-smc2013-final.pdf
http://dx.doi.org/10.1162/014892699559896

[15] A. McLean, D. Griffiths, N. Collins, and G. Wiggins,

“Visualisation of live code,” in Proceedings of the 2010

international conference on Electronic Visualisation

and the Arts, ser. EVA’10. Swinton, UK, UK:

British Computer Society, 2010, pp. 26–30. [Online].

Available: http://dl.acm.org/citation.cfm?id=2227180.

2227185

[16] F. Berthaut, “Rouages: Revealing the mechanisms of

digital musical instruments to the audience,” in (sub-

mitted to) Proceedings of the NIME conference, 2013.

[17] R. Rowe, Interactive Music Systems: Machine Listen-

ing and Composing. Cambridge, MA, USA: MIT

Press, 1992.

[18] D. Crockford, “The application/json media type for

javascript object notation (JSON),” RFC4627, 2006.

[19] Y. Orlarey, D. Fober, and S. Letz, NEW COMPU-

TATIONAL PARADIGMS FOR COMPUTER MUSIC,

2009, ch. FAUST : an Efficient Functional Approach to

DSP Programming, pp. 65–96.

[20] M. Wright, Open Sound Control 1.0 Specification,

2002. [Online]. Available: http://opensoundcontrol.

org/spec-1 0

[21] J. F. Allen, “Maintaining knowledge about temporal

intervals,” Commun. ACM, vol. 26, pp. 832–843,

November 1983. [Online]. Available: http://doi.acm.

org/10.1145/182.358434

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1609 -

http://dl.acm.org/citation.cfm?id=2227180.2227185
http://dl.acm.org/citation.cfm?id=2227180.2227185
http://opensoundcontrol.org/spec-1_0
http://opensoundcontrol.org/spec-1_0
http://doi.acm.org/10.1145/182.358434
http://doi.acm.org/10.1145/182.358434

