
OPERAcraft: Blurring the Lines between

Real and Virtual

Ivica Ico Bukvic Cody Cahoon Ariana Wyatt

Virginia Tech

School of Performing Arts

Institute for Creativity, Arts, and

Technology
ico@vt.edu

Virginia Tech

Computer Science
codyc@vt.edu

Virginia Tech

School of Performing Arts
ariana1@vt.edu

Tracy Cowden
Virginia Tech

School of Performing Arts
tcowden@vt.edu

Katie Dredger
James Madison University

College of Education
dredgemk@jmu.edu

ABSTRACT

In the following paper we present an innovative approach

to coupling gaming, telematics, machinima, and opera to

produce a hybrid performance art form and an

arts+technology education platform. To achieve this, we

leverage a custom Minecraft video game and sandbox

mod and pd-l2ork real-time digital signal processing en-

vironment. The result is a malleable telematic-ready plat-

form capable of supporting a broad array of artistic forms

beyond its original intent, including theatre, cinema, as

well as machinima and other experimental genres.

1. BACKGROUND

Making art with found technologies is as old as art

making itself. Therefore it comes as no surprise that vid-

eo games, gaming engines, and virtual 3D environments

are being used to produce movies beyond their original

intent. We refer to this form of art as machinima [1][2].

More recently, with the emergence of the sandbox video

game genre, most notably the ubiquitous Minecraft [3],

lines between entertainment, creativity, and learning are

all but gone. Today, online video channels like YouTube

[4] are increasingly populated with in-game footage ex-

ploring various virtual 3D environments in a sandbox-

like fashion, coupled with recordings of conversations

among players who are there simply sharing their person-

al reactions to the ensuing adventure. Arguably these can

be seen as a subset of machinima with first-person point

of view and minimal post-production.

Minecraft, as a signature example of a sandbox-game

hybrid has seen a widespread adoption in various learning

contexts [3][5][6][7][8][9] including the most unsuspect-

ing uses, such as 3D printing [10] and rendering 3D video

feed from Kinect [11]. The inherent malleability and a

stylized low-threshold visual design invites users to tink-

er with blocks, shapes, textures, sounds, behavior, etc.

[12]. Of particular interest are music videos that use cus-

tom renditions of popular pop songs with Minecraft-

centric lyrics where due to limitations of in-game charac-

ters’ expressions (mouth movement, body gestures, emo-

tions, etc.) the videos are often rendered using profes-

sional 3D modeling tools that work hard at recreating the

8-bit-style graphics of the surrounding environment,

while making characters considerably more elaborate

[13][14]. Legal ramifications aside, the popularity of

these tunes has reached such proportions that they can

now be purchased from online music stores, such as

iTunes. Another notable aspect of Minecraft is its robust

online network code--it is not uncommon to participate in

online environments with thousands of players present,

something that even today very few online games can

scale to.

It is worth noting a significant divide between machin-

ima renditions such as the aforesaid music videos versus

the first-person in-game footage presented earlier. This is

particularly potent given a rich modding community that

(save for a few isolated efforts [15]) has steered away

from modding the character features to allow them to be

more expressive. It appears that having similar set of fea-

tures within the gaming engine itself would open doors

for a seemingly unique set of opportunities where the

gaming environment could become synonymous with a

more complex production environment, akin to that of a

post-produced machinima, while concurrently leveraging

the multiplayer and consequently massive online real-

time participation and/or observation of such a produc-

tion.

2. MOTIVATION: INSTANT OPERA

There is a significant body of evidence showing that in-

depth exposure to the arts has remarkable, far-reaching

effects. Students in quality art programs benefit from a

wide range of positive effects including development of

creativity and thinking skills, better self-expression, ap-

preciation of art and music, learning about other cultures,

and enriched personal satisfaction with their achieve-

ments [16]. The particular genre of opera outreach–

involving non-musicians in the creative process–is being

done around the world. Wolf Trap Opera (Vienna, VA)

Copyright: © 2014 Bukvic et al. This is an open-access article dis- tribu-

ted under the terms of the Creative Commons Attribution License 3.0

Unported, which permits unrestricted use, distribution, and reproduction

in any medium, provided the original author and source are credited.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 228 -

mailto:ico@vt.edu
mailto:codyc@vt.edu
mailto:ariana1@vt.edu
mailto:tcowden@vt.edu
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

has a program where the K-12 audience chooses a story

and the professional opera singers improvise this story on

the spot. Another program in Cardiff, Wales works with

homeless adults. Their motto is “giving homeless people

a voice,” and they work to help the homeless gain confi-

dence and self-esteem. In developing our own initiative

designed to engage high school students in the creative

process, we added a significant technological component.

We envisioned an environment where students could

write a story and libretto, build a virtual set, costume vir-

tual characters, and ultimately control the characters

within the virtual setting in a live performance. Therefore

we assembled a team of professors, graduate students,

and undergraduates to guide a group of high school stu-

dents in creating an opera. Our team consisted of two

professors from Teaching and Learning (Katie Dredger,

English Education and Kelly Parkes, Music Education),

three professors from the Department of Music (Ariana

Wyatt, Voice; Tracy Cowden, piano; and Ivica Ico

Bukvic, Music Technology), a graduate student in stage

management (Amy Luce), and an undergraduate comput-

er science major (Cody Cahoon). Below we primarily

focus on project’s technical component developed by

Bukvic and Cahoon.

3. INTRODUCING OPERACRAFT

In an attempt to identify optimal 3D virtual environment

that would support the Instant Opera paradigm, Bukvic

suggested the use of Minecraft. The obvious advantages

included a game-sandbox hybrid offering a vibrant and

diverse creative community, from modders to artists.

More so, with its popularity among the target population,

the environment has a proven educational track, serving

as a potent retention catalyst. Minecraft was not without

limitations, however, many of which are described in the

Background section. In addition, Minecraft lacked access

to the original API, with the only option at the time being

community-driven effort to decompile JAVA runtime

into a human-readable API. Consequently, modding limi-

tations were not entirely clear, requiring further tests and

assessments, and ultimately leading to implementations

that may be seen more as a workaround rather than a

maintainable feature. Nonetheless, following initial as-

sessment, the research team found Minecraft a favorable

foundation and consequently decided to name the project

OPERAcraft.

4. IMPLEMENTATION

For OPERAcraft, we wanted to leverage Minecraft’s core

facilities that are easily accessible to our target audiences,

such as an ability to design “skins” (textures), collabora-

tive scene design, and out-of-box multiplayer support

with chat and other core functionalities. Some features

were left intact, while others required changes that ranged

from fine-tuning to complete redesign. Such improve-

ments are further discussed below along with new addi-

tions. All modifications are based off of the Minecraft

1.5.2 codebase.

One of the focal challenges was to make Minecraft as

comprehensive of an environment for real-time video

production. This meant implementing new features that

would allow existing facilities to serve as a camera feed

without extraneous and/or distracting GUI widgets, as

well as allowing for multiple simultaneous camera views

one could easily switch between and broadcast on the

main camera view or projector. The ensuing camera

views were essentially additional players that were visi-

ble to actors in a form of solid color characters and pro-

vided visual cues (switching their head colors from red to

green), so that actors can at all times know where are all

cameras are located as well as which camera is currently

active. The same camera characters were rendered invisi-

ble to the projector whose view automatically latched

onto the desired camera view and had no GUI markers

that would detract from an impression of a genuine cam-

era feed. The projector was invisible at all times and was

not interacted with directly beyond being issued com-

mands to latch onto camera views. The only exception

were chat messages that were repurposed for subtitles

allowing one line at a time (so as to limit the on-screen

clutter). Concurrently, all acting players within the game

were allowed to receive additional chat messages from

the stage manager that were visible only on their screens,

while projector ignored them.

A collection of new features necessary for seamless

scene changes included fade ins and outs (implemented

as a workaround by making the projector wear an in-

creasing number of semi-transparent “helmets”), as well

as an ability to instantly teleport performers and cameras

to a predetermined set of coordinates to minimize transi-

tion times.

Key Action

j
Both arms are in default (down) position

(Fig.1.a)

k The left arm is placed directly out (Fig.1.b)

l The right arm is placed directly out (Fig.1.c)

u Both arms are up (Fig.1.d)

i
The left arm is placed at an left-upward angle

(Fig.1.e)

o
The right arm is placed at a right-upward an-

gle (Fig.1.f)

h Hides/shows the on-screen GUI

y
Hides/shows the on-screen hints for arm

movement/positioning

Table 1. Client-side key mapping.

As a subset of the aforesaid challenge, the technical

team sought ways to make acting more expressive and

closer to the levels of post-produced machinima. At the

very core this consisted of mouth movement and arm

gestures. Other, finer adjustments included removal of

player decals and other visual notifications that may de-

tract from the immersion (from audience’s vantage

point). In order to identify camera players from perform-

ers and the main camera view (projector) and thus restrict

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 229 -

behaviors of each client in respect to aforesaid features,

the mod compared client usernames to a hardwired data-

base. In the current mod version, this and other settings

have been abstracted as separate configuration text files

that allow for mod’s easy repurposing for other produc-

tions.

Arm movement was handled client-side. Namely, each

user had access to an array of arm movements that were

mapped symmetrically across the keyboard targeting each

arm separately. Given that arm motion was interpolated,

more complex arm motions were possible by triggering

various arm positions in the middle of another animation.

As a result the ensuing mod provided additional key

mappings described in Table 1 and further elaborated

upon in the Figure 1 below. The most recent mod version

further allows for user to determine the speed of arm

movement that is determined by the length of the key

press—the longer the key press, the slower the arm

movement. This also means that the arm movement

commences once the key has been released and thus re-

quires preemptively timed key presses on slower arm

motions.

Figure 1. Avatar arm positions (see table 1 above for

additional explanation).

The visual aspect of mouth movement/animation was

implemented client-side, while the DSP component was

devised in Pd-L2Ork [17][18][19][20]. We will discuss

the DSP component in the next section below. In order to

avoid making significant changes to the Minecraft code-

base, we opted for designing animated mouths as a col-

lection of “helmets” that are rapidly altered. As a result,

Minecraft characters had larger than usual heads that

were now painted on top of the virtual helmet placed on

top of their real heads. Although a workaround, the

choice was in good part driven by the fact that face tex-

ture is coupled with the rest of the skin texture, making it

difficult to update dynamically. Thus the implementation

has paved way towards more complex animations further

down the road, such as eye animations (blinking, winc-

ing, sad or happy, etc.) and other facial expressions.

4.1 Connecting Pd-L2Ork and Minecraft

Given the Minecraft engine did not provide core audio

DSP facilities necessary for mouth movement to match

that of singers, with focus on rapid prototyping, we set

out to provide a networked interface between Pd-L2Ork

and Minecraft mod OPERAcraft that would allow us to

feed DSP data into the mod and alter the environment. To

achieve this, we relied on Pure Data [21] and by exten-

sion Pd-L2Ork’s FUDI protocol [22] which resembles a

simplified version of the Open Sound Control (OSC)

protocol [23]. This allowed us to do audio processing

inside Pd-L2Ork and feed the ensuing mouth movement

data into Minecraft. All data was broadcast across the

subnet using UDP packets (x.x.x.255 address) to mini-

mize configuration issues and sidestep the necessity of

specifying receiving client’s IP address. The mouth

movement was not the only use for the networked proto-

col and therefore the aforesaid broadcast of networked

data also paved way towards splitting various production

tasks among multiple broadcasting clients, which proved

instrumental in the final production.

Command/Syntax Result

<client> @mouth

<mouth position 0-4>

The specific client’s mouth

is changed to position 0-4

(Fig.2)

@warn <message>

Stage cues are displayed

only on actors/players’

screens

@tpall <teleport position

0-6>

Teleports actors/players to

a position before a new

scene (currently hardwired

inside the mod)

<client> @text

<message>

Displays a new subtitle for

10 seconds from specified

player (synonymous to a

client posting a chat on

their own)

<client> @fade <fade

level 0-15>

Fades the client’s screen

ranging from 0 (clear) to

15 (completely black)

@time <0-18000>

Sets the in-game time to

the number specified

(0=dawn, 18000=midnight)

@view <client>

Makes the projector player

take over the specified cli-

ent’s view

Table 2. Networked messages syntax and results.

Considering the production team within the physical

performance space (where virtual opera was displayed on

a large screen and out of which it was broadcast live out

into the world) was scattered across the performance

space, with some participants located in control booths

and catwalks, and others on stage, having multiple net-

worked machines broadcasting newfound protocol data

allowed us to minimize requirement for co-location. As a

A B C

D E F

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 230 -

result, we utilized three broadcasting clients, one for

mouth movement and scene control, second for stage

management messages, and third for subtitles, thus allow-

ing for workload to be split evenly among multiple pro-

duction staff members.

Since the Minecraft user names were already internally

hardwired in order for the Minecraft mod to be able to

autoconfigure itself to a specfic role, we chose to use

main camera view client (projector) as the entry point for

all networked data and from there distribute its behavior

via chat client. While this solution may be seen largely as

yet another workaround due to incomplete access to the

underlying Minecraft API, doing so has also allowed us

to exchange relevant client-side data packets via the same

protocol without requiring us to design another multi-

player data packet for each of the desired behaviors. This

was achieved using reserved commands that were pre-

pended with an “@” hook as described in the Table 2

above. Since Minecraft’s chat engine invisibly embeds

client username into all chat commands (1st argument in

the syntax in Table 2), all users would have ability to also

issue commands locally via chat as a means of easy de-

bugging and/or local control (e.g. situations where each

client processes its own voice in situ) and make them

active across the entire networked ecosystem, the only

shortcoming being clients who may be joining later who

would not be able to retrieve preexisting states of players

already in-game. As the production expected all players

to be present from start, this was not seen as an issue

worth addressing in this iteration.

Figure 2. Avatar mouth animation states from top-left

to bottom-right: 0 (mouth closed), 1 and 2 (alternating;

mouth open singing a vowel-based melisma), and 3-4

(random; transients and/or significant pitch delta).

4.2 Pd-L2Ork Component

Figure 3. Pd-L2Ork patch with mouth animation and

scene control engine.

Pd-L2Ork’s primary role was to provide voice analysis

and mouth animation (Figure 3). Secondary functions

included distribution of production team’s roles as well as

scene and camera control (Figure 3). Voice analysis re-

lied on audio streams captured using one microphone per

vocalist. It utilized frequency of zero crossings per buffer

of captured audio data and by doing so extrapolating

presence of transients. Given the simplicity of animation

(mouth relied on 4x4 pixel area, limiting our ability to

visibly project nuances of pronunciation), we did not in-

vest time in further isolating formants or any of the more

advanced speech analysis features.

Figure 4. Final Technical Setup Diagram.

For the initial production there were a total of 5 mouth

states that generated a cartoon-like animation: 0 being the

closed mouth; 1 and 2 (sequentially alternating) being

open mouth vibrating in operatic style, reflecting a long

melisma on an open vowel; while 3 and 4 being randomly

picked when detecting transients. Scene control interface

(coupled with the mouth detection, shown on Figure 2

above) relied on networked messages to invoke fade-ins

and outs and teleport players and camera to new posi-

tions. Two additional clients were provided for subtitles

and stage management cues, both of which were embed-

0 1 2

3 4

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 231 -

ded in pd-l2ork’s “coll” object and broadcast sequentially

with a push of a button. Consequently, the ensuing tech-

nical setup layout is depicted in Figure 4.

5. OPERA PRODUCTION

From a learning perspective, ten high school students

participating in OPERAcraft production engaged in a

series of scaffolded creative exercises designed to build a

full-fledged opera. They started with a libretto.

In order to compose the libretto, the students first col-

laborated in a workshop setting to determine the theme of

the piece and the message that they were interested in

exploring or challenging in regards to human existence

[24][25]. Together, the students first identified the theme,

characters, and setting before moving on to plot elements.

Inspired by dystopian and coming-of-age fiction known

for its popularity among adolescents [26], the student

participants chose a person vs. person conflict in order to

show resistance toward evil authority. This evil authority

was personified in Emperor X in a post-apocalyptic un-

derground world. The student libretto authors, familiar

with Minecraft, conceived of the plot with a particular

setting in mind. The libretto coach, a former high school

English teacher, assigned pairs of students to specific

scenes to mentor them through this process.

Building the set within the virtual environment proved a

powerful engagement catalyst and has largely influenced

the plot development. Using in-game editing tools and a

third party external editor MCEdit [27], students trans-

formed the world from open plains to an underground

cave, filled with stalactites and dawned with stone and

rundown houses which represented the poor and rich

classes of this underground world, and finally centered

with a monumental, villainous castle in which numerous

scenes take place.

When dealing with the creation of custom characters’

costumes, one costume for each character was a must.

Students wanted the costumes to appear as if the in-game

characters were from older times, but also wanted their

outfits to seem relevant. The final costumes were chosen

from an online Minecraft “steampunk” skin catalog.

Because exposition and character development were

difficult within the short time constraints, the dialog of

the libretto had to focus on plot movement instead of the

building of pathos. Like a short story, the falling action

and resolution of the libretto were tightly linked and left

the audience with a feeling of a lack of closure. The stu-

dent authors of the libretto, after discussion, agreed that

this ending was necessary based on time constraints. Fur-

thermore, the lack of development in the conclusion of

the plot was purposeful in that it inspired interest in a

sequel featuring younger brother Marcus as the protago-

nist, as well as fan fiction.

While the students were working on development of the

characters and the story, Cowden and Wyatt researched

excerpts from Mozart opera that might be appropriate for

each section of the libretto, searching for selections that

had the appropriate dramatic feel for each section. The

focus was on solos, duets, and trios that would match as

closely as possible what the students were creating in the

libretto. This is, of course, backwards to the normal pro-

cess of writing an opera, but worked rather well within

Figure 5. Photo from the premiere in the Moss Arts Center Cube with five vocalists on two catwalk levels (right), pianist

(bottom right), five virtual performers and one cameraman (bottom left), and a large projection screen (left). The rest of

the production team (not pictured here) was distributed across various catwalk levels and their respective control booths.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 232 -

the time constraints and in a setting with students who are

not musically proficient. Selections from several differ-

ent Mozart operas were brought to students’ attention,

offering them some choices, and demonstrated how these

musical selections might work for each scene. The stu-

dents used their ideas about character and story develop-

ment to match music selection with a particular scene.

In some cases they resorted to adapting the libretto to

better match the musical constraints.

Once the libretto draft was completed, the cast met with

Cowden to coach the music. During this process editing

continued, and words and rhythms were changed to be

more clearly understood in a sung context and therefore

reinforce the plot clarity. As per opera’s tradition, musi-

cal rehearsals were followed by staging. In the staging

rehearsals the high school students practiced controlling

their avatars and the supporting infrastructure of the new-

found OPERAcraft mod, while the vocalists sang their

parts. Wyatt helped guide the high school students in

controlling their characters effectively in order to provide

clear storytelling. Cowden created transitional music ma-

terial to make scenes flow seamlessly together. She also

introduced instrumental excerpts to serve as an overture

at the beginning of the opera as well as instrumental-only

music for the “fight scene” and the conclusion of the sto-

ry. Again, the students were presented with choices and

selected music based on what they felt best fit their libret-

to. Finally, collegiate singers suggested adding wordless

humming to the final scene, which incorporated music

from Mozart’s Requiem. The staging rehearsals included

a significant amount of time rehearsing the “fight scene,”

at which point we included a rehearsal with a stage com-

bat director, Cara Rawlings, who coached the high school

students in how to adapt stage combat techniques for

their Minecraft characters.

Throughout the staging part of the rehearsal, the show’s

main camera view was rehearsed and controlled by a

Virginia Tech student who had previously worked on the

project before graduating. The cameraman used a combi-

nation of flying, strafing, moving, running, and crouching

to create different angles throughout the performance.

The cameraman also took advantage of the Minecraft

bow, which zooms in when in use. This was used to

zoom in on characters during longer scenes, such as dur-

ing the character Lilith’s aria.

5.1 Premiere

The premiere involved five unique characters, one cam-

era player, five student vocalists accompanied by a piano

reduction of aria arrangements, and five production staff

manning the technology. In addition, the production also

relied on a number of Virginia Tech Moss Arts Center

staff members for lighting, rigging, and ushering needs.

The opera was performed twice in front of a standing

room only audience. Performances were also streamed

live via livestream bringing additional 7,810 unique

viewers. A recording of one of the opera livestreams can

be viewed at <http://youtu.be/BCFKgffSdwM>. The

event garnered a considerable amount of attention

through mainstream and online media (e.g.

[28][29][30][31][32]).

5.2 System Performance

Given that the networked system was on its own dedicat-

ed Ethernet, network packet latency among different cli-

ents was less than 5ms and as such did not play a major

role in overall system’s latency. Pd-L2Ork’s transient

detection did not require complex calculations but did

rely on a generous buffer size. Hence its latency was lim-

ited by the audio buffer size which was approx. 93ms

(4096 bytes at 44,100Hz sampling rate), producing a

~10fps mouth animation. Other Pd-L2Ork features, like

camera control and subtitles produced minimal (network-

related) latency between Pd-L2Ork and the Minecraft

engine, resulting in responsive low-latency video produc-

tion system. Despite a generously-sized audio buffer for

transient and amplitude analysis which generated largest

theoretical latency, the overall experience did not appear

delayed, in part because its output manifested in a visual

domain.

6. CONCLUSIONS

The project has resulted in an engaging outreach arts

experience for eight high school boys, and two live sold-

out performances of an opera that concurrently unfolded

both in real and virtual worlds. The performances were

streamed live and viewed around the world and had over

thirty thousand hits in the month following. The ensuing

opera production has received positive acclaim and we

have had numerous requests for a sequel.

Apart from its artistic and outreach impact, the project

bore another deliverable, the Minecraft-Pd-L2Ork hybrid

mod OPERAcraft—a malleable technology whose fea-

tures enable Minecraft’s in-game facilities to approach

that of a post-produced machinima. Consequently, the

research team envisions the ensuing implementation be-

ing appropriate in a broad range of live and post-

production scenarios, beyond its original intent, from

machinima movie-making to theatre. The same also of-

fers interesting opportunities at extending virtual pres-

ence and consequently outreach by allowing audience to

engage with the production directly in-game. The existing

mod offers unique opportunities for observers to study

action from their own personalized vantage point in addi-

tion to predetermined camera views, paving way towards

more immersive ways of experiencing telematic perfor-

mances [33]. The same technology also has the potential

to serve as a means of archiving and revisiting past per-

formances in an immersive and easily accessible format.

Although we utilized most of the facilities offered by

the newfound OPERAcraft mod, some features remained

underexploited mainly due to time constraints, leaving

room for further enhancement of future productions. One

of those was multiple camera views that were scrapped

due to lack of adequate rehearsal time. Another produc-

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 233 -

http://youtu.be/BCFKgffSdwM

tion-level consideration includes improved microphone

and vocalist placement to limit cross-contamination be-

tween different audio streams and thus preventing false

positives in mouth animations.

Based on the experiences obtained through the OPER-

Acraft premiere, we also observe the following limita-

tions that will need to be addressed in the near future to

ensure that the mod can continue to scale with newer ver-

sions of Minecraft. Namely, the mod in its current state

relies exclusively on the community-driven API based on

the version 1.5.2 that may in the long run limit code’s

upstream compatibility. Some features had to rely on last-

minute workarounds, such as inconsistent teleporting that

required two consecutive commands to ensure that both

cameras and the projector have switched positions. In a

production user-specific behaviors were hardwired, limit-

ing ability for the program to be easily applied in differ-

ent scenarios. In the latest iteration, however, these com-

ponents have been extracted into separate text-based con-

figuration files and are now user-configurable. The chat

system may require additional filtering to prevent internal

Minecraft notifications on the main camera view (e.g.

“character xyz died”), while also allowing players to chat

among each other without making such messages visible

on the main camera (projector) view. Another shortcom-

ing of the chat-based implementation for custom com-

mands is that clients who may be joining later will not be

able to retrieve preexisting states of players already in-

game (as would be the case with telematic visi-

tors/observers who may join in midway through the

play/performance). This is something that will have to be

looked at in the next iteration.

6.1 Obtaining OPERAcraft

OPERAcraft is envisioned as a freely available open

source project designed to promote outreach and educa-

tion in its broadest sense. The latest iteration of OPERA-

craft mod and supporting Pd-L2Ork patches are available

at OPERAcraft’s website [34]. For additional information

on the mod contact technical director Bukvic.

7. FUTURE WORK

Apart from the shortcomings identified in the previous

section, in the coming months the team will look into

further expanding online resources with supporting doc-

umentation, with the focal intent of promoting

crowdsourcing further development, including aforesaid

enhancements. Most notably, we are looking to further

broaden the expressive potential of in-game avatars.

We also envision the ability for telematic spectators to

observe production in-game, either by latching onto one

of the camera views or by allowing them to freely explore

action from their own desired angle. While this is techni-

cally already possible, we would like to address the

aforesaid challenge of observers who are joining late and

whose client may not have all the up-to-date states for

individual players and/or cameras.

Another desired feature would be the ability to replay

action, which would require logging movement and ac-

tion data from all in-game players (excluding aforesaid

virtual audience members). This, however, may prove

tricky in respect to non-player characters (NPCs) whose

unpredictable spawning and movement will be difficult to

reproduce without significant alterations to the Minecraft

codebase.

8. ACKNOWLEDGMENTS

The research team would like to hereby thank Virginia

Tech’s Institute for Creativity, Arts, and Technology

(ICAT) for funding this initiative as well as both ICAT

and Virginia Tech Moss Arts Center for staffing and sup-

port of this event. Likewise, we would like to thank the

students involved in the project, as well as Minecraft, Pd-

L2Ork, and Pure-Data communities without whom this

project would not have been possible.

9. REFERENCES

[1] H. Hancock and J. Ingram, Machinima for dum-

mies. John Wiley & Sons, 2007.

[2] D. Morris, M. Kelland, and D. Lloyd, Machinima:

Making animated movies in 3D virtual environ-

ments. Muska & Lipman/Premier-Trade, 2005.

[3] S. C. Duncan, “Minecraft, beyond construction and

survival,” Well Play. J. Video Games Value Mean.,

vol. 1, no. 1, pp. 1–22, 2011.

[4] J. Burgess and J. Green, YouTube: Online video

and participatory culture. John Wiley & Sons,

2013.

[5] J. Brand and S. Kinash, “Crafting minds in Mine-

craft,” Educ. Technol. Solut., vol. 55, pp. 56–58,

Aug. 2013.

[6] C. Schifter and M. Cipollone, “Minecraft as a

teaching tool: One case study,” Soc. Inf. Technol.

Teach. Educ. Int. Conf. 2013, vol. 2013, no. 1, pp.

2951–2955, 20130325.

[7] B. Cotton, Minecraft: guided emergent game de-

sign. 2011.

[8] D. Short, “Teaching scientific concepts using a

virtual world-Minecraft.,” Teach. Sci. J. Aust. Sci.

Teach. Assoc., vol. 58, no. 3, 2012.

[9] J. H. L. Lee-Leugner, “Youth, gaming, and the

network society: exploring the agentic potential of

gameplay in Minecraft,” Thesis, Communication,

Art & Technology: School of Communication,

2013.

[10] J. Aron, “Minecraft videogame blurs borders of

3D-printing,” New Sci., vol. 211, no. 2823, p. 20,

2011.

[11] “Minecraft + Kinect : Building Worlds!,” 21-Jan-

2011. [Online]. Available:

http://www.youtube.com/watch?v=x2mCDkqXki0

&feature=youtube_gdata_player. [Accessed: 30-

Mar-2014].

[12] A. Leavitt, “The Source of Open-Source Culture:

Participation in the Production of an Open Media

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 234 -

Artifact, Minecraft,” Sel. Pap. Internet Res., vol. 3,

no. 0, Oct. 2013.

[13] “♫ ‘Wrecking Mob’ - A Minecraft Parody of Mi-

ley Cyrus’ Wrecking Ball,” 05-Nov-2013.

[Online]. Available:

http://www.youtube.com/watch?v=UiKOf4jNbm8

&feature=youtube_gdata_player. [Accessed: 30-

Mar-2014].

[14] “‘Dragons’ - A Minecraft Parody of ‘Radioactive’
By Imagine Dragons (Music Video),” 08-Jan-2014.

[Online]. Available:

http://www.youtube.com/watch?v=MfERdhRCUps

&feature=youtube_gdata_player. [Accessed: 30-

Mar-2014].

[15] “Minecraft - Smart Moving Mod Demo,” 13-Dec-

2011. [Online]. Available:

http://www.youtube.com/watch?v=hjmmQ0aTAZ

Q&feature=youtube_gdata_player. [Accessed: 30-

Mar-2014].

[16] E. W. Eisner, The arts and the creation of mind.

Yale University Press, 2002.

[17] I. Bukvic, “A Behind-the-Scenes Peek at World’s

First Linux-Based Laptop Orchestra – The Design

of L2Ork Infrastructure and Lessons Learned,”

presented at the Linux Audio Conference, Stanford,

California, 2012, pp. 55–60.

[18] I. Bukvic, T. Martin, E. Standley, and M. Mat-

thews, “Introducing L2Ork: Linux Laptop Orches-

tra,” presented at the New Interfaces for Musical

Expression, 2010, pp. 170–173.

[19] I. Bukvic, T. Martin, and M. Matthews, “Moving

Beyond Academia Through Open Source. Solu-

tions–Introducing L2Ork, Virginia Tech’s Linux

Laptop Orchestra,” J. SEAMUS, 2011.

[20] I. Bukvic, “Virginia Tech Department of Music

L2Ork - Software - Linux Laptop Orchestra.”

[Online]. Available:

http://l2ork.music.vt.edu/main/?page_id=56. [Ac-

cessed: 08-Feb-2012].

[21] M. Puckette, “Pure Data: another integrated com-

puter music environment,” Proc. Int. Comput. MU-

SIC Conf., pp. 37–41, 1996.

[22] “FUDI,” Wikipedia, the free encyclopedia. 30-Mar-

2014.

[23] M. Wright, “Open Sound Control-A New Protocol

for Communicationg with Sound Synthesizers,” in

Proceedings of the 1997 International Computer

Music Conference, 1997, pp. 101–104.

[24] H. W. Balk, “The Craft of Creating Opera Restor-

ing a Lost Legacy through the Workshop Process,”

Opera Q., vol. 1, no. 2, pp. 91–108, 1983.

[25] M. Ballam, “Creating the LIBRETTO,” presented

at the Utah Festival Opera & Musical Theatre,

2014.

[26] C. Hintz and E. Ostry, Utopian and Dystopian

Writing for Children and Young Adults. Routledge,

2013.

[27] “MCEdit, a Minecraft World Editor.” [Online].

Available: http://www.mcedit.net/. [Accessed: 01-

Apr-2014].

[28] J. Scalzo, “Operacraft, not surprisingly, brings

opera to Minecraft,” Warp Zoned. .

[29] D. Haglund, “Minecraft, the Opera,” Slate, 09-Dec-

2013.

[30] J. Inverne, “Virginia Tech’s OPERAcraft Brings

Mozart to Minecraft, the Computer Game,” Classi-

calite. [Online]. Available:

http://www.classicalite.com/articles/4326/2013120

9/virginia-techs-operacraft-brings-mozart-to-

minecraft-the-computer-game.htm. [Accessed: 01-

Apr-2014].
[31] S. Tang, “Virginia Tech’s New Minecraft Machin-

ima: OPERAcraft (It’s Exactly What You Think It

Is).” [Online]. Available:

http://www.gameskinny.com/wtbmr/virginia-techs-

new-minecraft-machinima-operacraft-its-exactly-

what-you-think-it-is. [Accessed: 01-Apr-2014].

[32] A. Mac, “OPERAcraft,” AMT Lab @ CMU.

[Online]. Available: http://amt-

lab.org/blog/2013/9/case-study-operacraft. [Ac-

cessed: 01-Apr-2014].

[33] S. Dixon, Digital performance: a history of new

media in theater, dance, performance art, and in-

stallation. MIT Press (MA), 2007.

[34] C. Cahoon, “OPERAcraft,” OPERAcraft. [Online].

Available: http://disis.music.vt.edu/OPERAcraft/.

[Accessed: 13-Jul-2014].

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 235 -

