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ABSTRACT

While a large number of mechatronic and robotic musi-

cal instruments feature actuated drum strikers, the major-

ity of these percussion instruments are mechanically and

electronically quite simple. This article presents Nudge, a

new mechatronic drum beater with more degrees of free-

dom than is typical of most robotic percussion instruments.

Nudge can rotate to a variety of positions above one or

more percussive objects with the use of a closed-loop ser-

vomotor. Additionally, the height from which the drum-

stick hits the drum can be adjusted on the fly. Though de-

signed to be inexpensive and easy to build, Nudge is in-

tended to afford composers, installation artists, and other

users more compositional flexibility than with many previ-

ous mechatronic drum systems. A systems overview, eval-

uation, and discussion of usage applications are presented

along with a short history of related work in robotic per-

cussion systems.

1. INTRODUCTION

Musical robotic percussion instruments can gain expres-

sivity with the assistance of increased degrees of freedom.

By increasing the mechatronic complexity of robotic per-

cussion instruments, increased dynamic and timbral range

can be achieved. It is an objective of this paper to introduce

and evaluate such a system.

While other workers have engaged in much research in-

volving the application and implications of robotic per-

cussion systems, there exists a need in the literature for a

detailed overview of possible approaches to the designing

and building of such systems. It is an aim of this paper to

describe techniques that may prove useful to future roboti-

cists aiming to create robotic percussion systems capable

of greater expressivity than is typical for the majority of

contemporary works.

To fulfill the aforementioned goals, this paper introduces

Nudge, a robotic percussion mechanism capable of rotat-

ing its drumstick and varying the drumstick’s at-rest height.

Nudge (a drawing of which is shown in Figure 1) is de-

signed to be compatible with the communications schemes
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Figure 1. A drawing of Nudge, showing its turntable-

mounted solenoid drum beater and adjustable drumstick

height servo.

of the authors’ previously-built instruments, and makes use

of low-cost components to afford cost-effective larger-scale

production. Nudge serves as a testbed for enhanced ex-

pressivity robotic percussion systems: as a prototypical

system, it is expected that the techniques descrived herein

can be further applied to future devices.

This paper begins with an overview of current mecha-

tronic percussion systems, highlighting the need for a new

paradigm of increased expressivity in robotic percussion

mechanisms. A systems overview of Nudge is presented,

followed by a performance evaluation and a discussion of

the means by which performers and musicians may inter-

face with Nudge.

2. RELATED WORK

The majority of mechatronic musical instruments are per-

cussion actuators, designed to strike membranophones or

ideophones. Due to the relatively large number of percus-

sion actuators, this section will present an abbreviated his-

tory of those works deemed most influential in the design,

construction, and use of Nudge. Following an overview of

the works of other researchers and artists, this section will

discuss the authors’ own prior works, comparing them to

Nudge and describing the means by which their deficien-

cies catalyzed the creation of the new actuator.
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2.1 Mechatronic Percussion

As the most widely-built variety of musical robots, many

advances in robotic musicianship, robotic ethnomusicol-

ogy, and musical robotic ensembles largely or exclusively

feature percussion instruments. The abundance of robotic

percussion instruments is likely due to their potential for

simplicity in design and use: unlike chordophones or aero-

phones, percussive instruments can be built with few mov-

ing parts, allowing for workers to focus on compositional

rather than engineering goals.

This subsection focuses on three key contemporary appli-

cations in which robotic percussion instruments are used:

ensembles of robotic instruments, robotics as ethnomusi-

cological tools, and percussion robots as a means of fur-

thering robotic musicianship. Common traits across each

of these subdisciplines are examined, and a chronology of

each is presented.

2.1.1 Robotic Percussion Ensembles

Robotic percussion isntruments have long played a key

role in many historical and contemporary examples of mu-

sical robotic ensembles. Pioneers Trimpin and Godfried-

Willem Raes, discussed more extensively in [1] and [2], in-

clude percussion instruments in many of their sound sculp-

tures and compositions. The Logos Foundation, for ex-

ample, features a very large number of automatic drum-

ming instruments in their Man and Machine robot orches-

tra. Trimpin’s sculptural ensembles, of which many can

be seen in [3] and [4], often utilize mechatronic drum-

ming apparatus: his works JackBox and Laptop Percussion

(detailed in [3]), for example, use solenoid-actuated drum

beaters.

Many recent musical robotic ensembles consist either par-

tially or completely of percussion instruments. As of 2004,

Eric Singer’s League of Musical Urban Robotics (LEMUR)

consisted largely of percussion instruments [5]. Accord-

ing to Singer et al., these instruments “provide composers

with an immediacy of feedback, similar to composing on

synthesizers. However, as opposed to synthesizers, phys-

ical instruments resonate, project and interact with sound

spaces in richer, more complex ways. Clearly, they have a

more commanding physical presence as well” [5].

Many robotic ensembles formed after Singer’s LEMUR

also make use of percussion instruments. Ensemble Robot 1 ,

a performance troup founded by Christine Southworth and

Leila Hanson whose first performance was in 2005, exten-

sively use solenoid-based percussion systems. Brighton-

based artist Sarah Anglish performs with an array of bell-

playing and anthropomorphic robots 2 . Both Felix Thorn,

creator of Felix’s Machines 3 , and Roger Aixut and as-

sociates, founders of the Cabo San Roque experimental

instrument collective, use solenoid-based mechatronic in-

struments in their sculptures and performance devices. A

number of these ensembles are further described in [6].

Figure 2. Gamelatron (left) and MahaDeviBot (right).

2.1.2 Musical Robotic Ethnomusicology

A second recent musical robotic subdiscipline which has

made extensive use of percussion instruments is the bur-

geoning field of robotic ethnomusicology. A primary goal

of robotic ethnomusicologists is the preservation of per-

formance practice in non-western music with the aid of

musical robots. Co-author Ajay Kapur, for example, uses

percussion tools as pedagogical devices in North Indian

classical music [7]. His MahaDeviBot, shown in Figure 2,

consists of an array of Indian percussion instruments, each

struck with solenoid drum beaters.

Robotic ethnomusicology has been applied to Balinese

gamelan ensembles by two roboticists operating indepen-

dently of one another. Tyler Yamin developed the Robotic

Reyong, described in [8], as a means of allowing small

gamelan ensembles to use a physical Reyong in place of

the oft-used Reyong recordings. A second extensive robotic

gamelan has been developed by Aaron Taylor Kuffner in

association with Eric Singer’s LEMUR 4 . Kuffner’s Game-

latron (shown in Figure 2) consists of a wide array of Bali-

nese percussion instruments, each solenoid-actuated. One

of Kuffner’s primary goals in creating the Gamelatron was

“to develop ingenious methods to preserve and revive ex-

traordinary gamelan traditions rarely heard or passed on to

the new generation.”

Other notable robotic ethnomusicologists include Patrick

Flanagan and Jason Long. Flanagan, in his Jazari project,

uses a large number of mechatronic African percussion

instruments 5 . While much of its musical output models

contemporary dance music, Jazari has been used to play

rhythmically-intricate African works. Jason Long has in

2012 and 2013 built a variety of instruments designed to

play mechatronically-augmented traditional Japanese mu-

sic.

2.1.3 Robotic Percussion as a Research Tool

Rather than create ensembles of percussion instruments

or explore non-Western music from an automated-music

perspective, some workers use robotic drumming systems

as research tools to further what roboticist Gil Weinberg

calls robotic musicianship [9]. While both Trimpin and

Godfried-Willem Raes have long explored novel means of

extending robotic percussion technique, Weinberg has in

1 http://www.ensemblerobot.com/
2 http://www.sarahangliss.com/
3 http://www.felixsmachines.com/
4 http://www.gamelatron.com/
5 http://jazarimusic.com/
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recent years contributed much to the field, applying ma-

chine listening systems to allow for deep levels of human-

robot interaction. His 2006 work (coauthored with Scott

Driscoll) “Toward Robotic Musicianship” [9] introduces a

drumming system with added degrees of freedom. Wein-

berg’s algorithms take advantage of his robots’ added de-

grees of freedom, allowing them to extend their expressive

range. Such systems are a direct inspiration to Nudge, the

work presented in this paper.

Other workers who turn to novel approaches to explore

robotic musicianship are the creators of the “Expressive

Machines” ensemble 6 , who have developed a snare drum

fitted with a large number of beaters, allowing for com-

posers to selectively strike various regions of the drum head.

More recently Jun Kato [10] and Alyssa Batula, et al. [11]

have explored using novel softward techniques and control

systems to allow for simpler and more reliable percussion

systems.

2.2 KarmetiK Drum Beaters

Figure 3. KarmetiK drum effectors, clockwise from top

right: Kapur Finger, DarTron, TrimpTron, KalTron.

While the previous subsection focused largely upon sys-

tems built by other researchers and artists, this subsection

details the author’s (and author’s collaborators’) existing

mechatronic drum beaters. By understanding the advan-

tages and disadvantages of these systems, informed deci-

sions could be made during the design, construction, and

use of Nudge. A goal in Nudge’s design was to create

a simple, low parts-count, and inexpensive mechatronic

drum beater, allowing for many such beaters to be assem-

bled and used: the evaluation and study of pre-existing

systems allowed for the integration of their features into

Nudge.

The drum beaters which contributed to the design and

construction of Nudge fall into two categories: linear and

rotary-motion beaters, a number of which are shown in

6 http://expressivemachines.com/

Figure 3. Linear motion beaters are built around a linear

solenoid actuator. This actuator can be configured to either

directly affect the drum of affect the drum through a me-

chanical linkage. The “Kapur Finger” beater [12], shown

in Figure 3, is an example of such direct actuation: upon

receipt of a DC voltage, the solenoid’s plunger is pulled

toward the solenoid’s barrel. The barrel is modified to al-

low an extension to extend below the barrel upon actuation;

when deactivated, the extension returns inside the solenoid.

Solenoid beaters such as the Kapur Finger are the sim-

plest actuators used for drumming robots. They lack both

highly visible kinetic movement and the ability to inter-

face with existing mallets and drumsticks. To address these

problems, many other beaters (such as the KalTron and

DarTron, shown in Figure 3 and described in [8]) use a

linear solenoid connected to a crank mechanism. As their

output motion is rotary (a drumstick is swung in an arc

against a drum), such beaters can be considered to be rotary

solenoid actuators. A second type of rotary solenoid actu-

ator utilizes pre-configured rotary solenoids with attached

drumsticks. The TrimpTron beater, extensively used on

[13] and shown in Figure 3, is an example of such a mech-

anism.

Due to its simplicity, low parts-count, and potentially low

cost, the TrimpTron-style beater is used on Nudge: the ro-

tary solenoid drumstick mechanism is attached to a rotary

turntable. Its at-rest height can be adjusted with a servo-

attached cam. The next section details the design and con-

struction of Nudge.

3. NUDGE: DESIGN AND EVALUATION

Figure 4. Nudge.The turntable DC motor is at left.

Based upon the capabilities and shortcomings of the drum

beaters presented in the previous section, Nudge, a new

mechatronic drumming system, was designed and built.

Where the drumsticks of many of the previously mentioned

solenoid drum effectors are constrained about one degree

of freedom, Nudge adds an additional degree of freedom

perpendicular to the first, as well as the ability to adjust the

at-rest height of the drumstick. Such additional degrees of

freedom and articulation allow for musical gestures to be
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created that would be difficult or impossible with simpler

systems.

The remainder of this paper focuses on Nudge (pictured

in Figure 4). This section provides a systems overview

of the mechatron, followed by a description of the mecha-

tronic design and accompanying software. After present-

ing the system, its performance is evaluated and described.

3.1 System Overview

3.1.1 Mechanics and Actuators

Nudge is a mechatronic drum beater system consisting of

a drumstick affixed to a rotary solenoid. The solenoid and

drumstick height stop are mounted on a turntable driven

by a DC servomotor. These actuator choices were moti-

vated by three factors: actuator speed, ease of implementa-

tion, and price. The RC-style servo used to pivot the stick

height stop is an inexpensive actuator able to be mounted

directly to a chassis with little need for additional hard-

ware. Similarly, the DC servomotor used to pivot Nudge’s

turntable required few additional components to couple it

to the turntable.

Figure 5. Nudge’s drumstick’s at-rest height being varied

by the servo-mounted cam.

A rotary solenoid actuator is used on Nudge based both

the above criteria and the authors’ experience with the ac-

tuators listed above, in Section 2.2; a solenoid was cho-

sen over a DC motor due to the solenoid’s potential low

cost, low actuation noise, and very simple driver electron-

ics. The solenoid beater assembly on Nudge is similar to

a TrimpTron drum beater; the TrimpTron-style configura-

tion is used because of its low parts-count and simplicity:

compared to many of the more mechanically-complicated

solenoid drum beaters, the TrimpTron is quite minimalistic

while remaining a good performer. This simplicity results

in a low-cost actuator which is easy to assemble. A more

detailed evaluation of the TrimpTron’s performance can be

found in [13].

Figure 6. A block diagram of Nudge’s electronics.

Upon actuation, the solenoid rotates a stick against a per-

cussive surface. The stick is attached to the solenoid’s shaft

with a 3D-printed ABS plastic clamp; as tested, the drum-

stick is a 30 cm hardwood dowel. To accommodate dif-

ferent drumstick sizes, different 3D printed clamps may be

created. When the solenoid is deactivated, the shaft returns

to a home angle with the aid of a spiral return spring.

On the drum beaters discussed in Section 2, the drum-

sticks rest at a fixed height above the drum head. This

at-rest height is greatly responsible for the actuator’s char-

acteristics: one whose drumstick rests relatively close to

the drum head is capable of quiet playing and fast rolls.

Conversely, one whose drumstick rests relatively far from

the drum head is capable of more powerful strikes but slow

note repetition. The at-rest height of some beaters (such as

the KalTron and Kapur Finger) can be human-adjusted in

an offline manner, allowing for a mechatronic drum beater

to be reconfigured for different musical roles. This ad-

justability inspired Nudge’s online drumstick height stop,

which can adjust the drumstick’s at-rest height in an on-

the-fly manner during performances.

Nudge’s drumstick height stop is a cam mounted to the

shaft of an RC-style servo. By changing its angle, the

drumstick’s at-rest position can be adjusted. Figure 5 shows

a sequence of images of the drumstick’s at-rest height var-

ied according to the cam’s angle.

To allow the solenoid, drumstick, and drumstick height

stop assemblies to strike in more than one place, they are

mounted on a turntable. The turntable is attached via a

geartrain to a DC motor. Attached to the motor’s shaft is

a Hall Effect rotary encoder, allowing for closed-loop con-

trol over the turntable’s angular displacement to be imple-

mented.

A CAD/CAM workflow was used in the design and con-

struction of Nudge. Nudge was prototyped in the Solid-

Works CAD environment and many of its components were

laser cut or printed using additive manufacturing techniques.

A CAD/CAM workflow was chosen to allow for rapid de-

sign iterations and to simplify the construction of multiple

units for larger-scale performance and installation use.
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3.1.2 Electronics, Software, and Actuator Control

Nudge’s electronics consist of a communications subsys-

tem and an actuator control subsystem. These are imple-

mented using an Arduino Uno microcontroller and accom-

panying actuator driver integrated circuits. Figure 6 is a

block diagram of Nudge’s electronics.

MIDI Message Action Output Range

NoteOn Rotary solenoid on 0-255

NoteOFf Rotary solenoid off NA

PitchBend Rotate turntable 0-800

CC 7 (Volume) Rotate height stop 0-23

Table 1. Nudge MIDI messages, their resultant actions,

and their mapped output ranges.

Nudge receives and responds to MIDI commands from

a host device. The HIDUINO framework is used, allow-

ing for driverless MIDI HID functionality [14]. HIDUINO

was chosen instead of a dedicated MIDI hardware inter-

face due to its ease of implementation: if using an AT-

MEGA8U2 or ATMEGA16U2-equipped Arduino device,

no other electronics are needed for MIDI compatibility. A

drawback of this configuration is that creating a bus of mul-

tiple Nudge devices is difficult when using HIDUINO: fu-

ture iterations may include a provision for hardware MIDI

connectivity.

In a manner similar to the authors’ other HIDUINO-based

mechatronic instruments (such as those described in [15]),

Nudge’s ATMEGA16U2 microcontroller converts the USB

MIDI HID messages into serial MIDI messages compati-

ble with the Arduino’s primary microcontroller 7 . The Ar-

duino MIDI Library 8 is used on the Arduino’s primary mi-

crocontroller; its callbacks are employed to allow Nudge to

respond to specific incoming MIDI commands by execut-

ing command-specific code. Nudge responds to three sep-

arate incoming message types: NoteOn, control change,

and pitchbend messages. Table 1 lists the specific message

types and their output. The values are mapped according

to empirically-derived ranges.

To actuate the turntable motor, the Arduino microcon-

troller interfaces with an L298 integrated motor driver. The

turntable motor is a closed-loop device: its rotary encoder

is connected to the Arduino microcontroller’s external in-

terrupt pins. A PI control scheme is used to direct the

turntable to use-specified setpoints: the Arduino PID li-

brary 9 was implemented on Nudge’s Arduino microcon-

troller after simpler control schemes were empirically found

to be unstable or susceptible to relatively large amounts of

steady state error. Nudge’s P and I gains are 0.9 and 0.1

respectively, and are tuned to the system.

The PID controller’s setpoint is derived from a reduced-

reange version of an incoming MIDI pitchbend command:

the command is mapped to a range reachable by Nudge’s

7 For a detailed explanation of AVR-based Arduino systems using
the ATMEGA8U2 or ATMEGA16U2 controller as a USB interface, see
http://arduino.cc/en/main/arduinoBoardUno

8 http://playground.arduino.cc/Main/MIDILibrary
9 http://playground.arduino.cc/Code/PIDLibrary

Figure 7. A program flow diagram of Nudge’s firmware.

turntable. The turntable’s position is zeroed at startup by

moving the turntable counterclockwise until a limit switch

is tripped (a process illustrated in Figure 7). Subsequent

mapped pitchbend commands are relative to Nudge’s limit

switch-defined home position.

The drumstick height servo contains its own electronics

and is controlled by a variable duty cycle waveform gener-

ated by the Arduino’s pulse width modulation (PWM) out-

put. The Arduino Servo Library is used, as it provides an

easy-to-customize interface with the low-level PWM gen-

eration on the microcontroller.

The microcontroller actuates the rotary solenoid by switch-

ing an FDB7030BL power MOSFET with a low-current

PWM signal. The solenoid and turntable DC motor are

both powered by a 12 V DC power supply. Nudge’s power

supply is capable of providing the maximum of 24 W re-

quired in use cases wherein all actuators are powered.

3.2 System Evaluation

To gain an understanding of Nudge’s performance, a series

of evaluations of the system were performed. This sub-

section details the evaluations; the findings presented here

will not only demonstrate the characteristics of Nudge but

will also provide future users with an awareness of its be-

havior, allowing them to compose music in a manner that

takes advantage of its capabilities.

In this subsection, three tests are performed, each one fo-

cusing on a different subsystem of Nudge. Turntable ro-

tation rate, solenoid actuation rate, and solenoid latency

at varying drumstick height stop positions are measured.

These metrics are deemed important, as they directly af-

fect the musical output of Nudge.

3.2.1 Nudge Turntable Rotation Rate

An understanding of the rate of rotation of Nudge’s turntable

is useful in composing music to its advantage. The rota-

tion rate is due in part to its hardware and in part to the PI

control scheme implemented in Nudge’s microcontroller

firmware.

Figure 8 shows the DC servomotor’s encoder output in re-

lation to elapsed time. The graph illustrates the encoder’s

response to a series of instructions to move from encoder
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Figure 8. Nudge’s encoder output as the turntable was

instructed to move through a 90 degree arc.

position 100 to 600 (an angle of 90 degrees). A degree

of overshoot is observed, along with a protracted settling

time. For Nudge, the overshoot is deemed acceptable, as

it emerges in response to an increased gain factor on the

system’s proportional controller. This greater gain fac-

tor allow for rapid responses to setpoint change, a factor

deemed more important in Nudge than a small amount of

overshoot.

An advantage of the PI control scheme is that alterna-

tive gain factors can be implemented if the user prefers a

different response from the system. Additionally, gain fac-

tors can be quickly adjusted if drumsticks are exchanged,

changing the turntable’s response.

3.2.2 Nudge Actuation Rate

Figure 9. Nudge’s playing rate at varying height stop po-

sitions. As the servo rotates clockwise, the drumstick is

brought to an at-rest position closer to the drum head. The

data points shown are the avergae of three trials; no stan-

dard deviation greater than 1 beat per minute was observed

for any of the data points.

The rate at which a drum can be struck is a critical com-

positional factor affecting the manner in which composers

may work with a mechatronic drum beater. The drum ma-

terial, drumstick length, and mallet material affect this met-

ric, and the addition of the adjustable solenoid height stop

to Nudge complicates the act of measuring the solenoid’s

repetition rate.

An actuation rate test for Nudge is conducted first by set-

ting the solenoid height stop servo to an angle and then

by instructing Nudge to play increasingly quickly. The

fastest point at which the solenoid is able to play discrete

notes is recorded. As shown in Figure 9, the addition of

the solenoid height stop servo allows for consistent event

repetition at rates of up to 1357 beats per minute. The

nonlinearity shown in Figure 9 is likely due to two main

factors: firstly, the solenoid’s response behaves in a non-

linear manner as the plunger’s displacement relative to the

coil changes. Secondly, the drumstick’s recoil from im-

pact with the drum head when its at-rest height is close to

the drum head allows for it to “roll,” springing back from

the drum head back to its at-rest position. This effect is

reduced at higher at-rest heights.

Unlike the nonlinear solenoid responses reported in [13]

and [16], the standard deviation across multiple trials is

quite small. In spite of its nonlinearity, Nudge behaves

in a predictable manner conducive to repeatable musical

performances. With higher solenoid stop positions (such

as those represented by the rightmost data points in Fig-

ure 9), slower, louder drum patterns may be played. This

flexibility of note repetition rates (and accompanying strike

power) allows composers an added element of expressive

control when compared to many of the existent drum beat-

ers discussed above.

3.2.3 Nudge Drum Beater Latency

MIDI Val. Dist. from Drum (mm) Latency (s)

58 73.5 0.11

77 55 0.09

94 36 0.08

112 18.5 0.06

127 5 0.04

Table 2. Nudge’s latency between MIDI instruction trans-

mission and audio onset at varying distances above the

drum head.

The servo-actuated rotary stop changes the drumstick’s

proximity to the drum head. As the proximity changes, the

time between the transmission of an actuation instruction

and the stick’s impact on the drum head changes. To mea-

sure this changing latency, the servo is actuated at varying

heights above the drum head. The drum is recorded at a

sample rate of 44.1 kHz, and the time between the trans-

mission of the MIDI message and the stick’s impact on the

drum’s head is measured with a microphone placed 5 cm

from the drumstick’s point of contact with the drum head.

The Nudge microcontroller was plugged directly into the

MIDI host PC’s USB 2.0 port.

The results of this evaluation are shown in Table 2: three

recordings were made. The average of the three is shown.

In each case, the standard deviation of the averages is smaller

than the resolution of the audio analysis tool used.

Nudge’s evaluations indicate that it is a system capable

of fast, repeatable drum striking sequences at a range of

positions on one or multiple drums. The rotation rate is

rapid enough to allow for position changes with a typical

musical pattern. While potentially powerful, these parame-

ters require fine adjustments to be exploited during a com-

positional process. Efforts made to streamline this act of

interfacing with Nudge are discussed in the next section.

Proceedings ICMC|SMC|2014          14-20 September 2014, Athens, Greece

- 668 -



Figure 10. A program flow chart of Nudge’s rotation po-

sition recall routine.

4. INTERFACING WITH NUDGE

Nudge features three actuation modes which must be con-

trolled in a sequence in order to acheive a desired output. It

is the goal of the work described in this section to present

composers with a means by which they may interface with

Nudge, simplifying the act of controlling the device’s ac-

tuators.

Nudge is designed to be compatible with the authors’

other works: it may be connected to a server on a net-

work of musical robots and addressed by numerous clients.

The network, dubbed Tangle, allows for clients to address

parametrically rich musical robots with simplified com-

mands: each instrument connected to the network can be

provided with a custom “subclass” configuration, allowing

for the server to output device-specific commands in re-

sponse to subclass-specified input events. A potential out-

come of this subclassing is that complicated sequences of

input events can be abstracted into a single message; upon

receiving the single message, the server can then automat-

ically execute the complicated sequence of commands.

To demonstrate this functionality, a rotation position re-

call feature has been implemented on Nudge. With the use

of this feature, a user may save preset Nudge rotation po-

sitions and recall the saved positions using custom mes-

sages. This rotation position recall feature is of interest for

three reasons: firstly, it allows for “preset”-style storage

of rotation angles deemed musically interesting by a user;

secondly, it maps the fine-resolution MIDI pitchbend mes-

sages into simplified NoteOn messages, allowing for more

rapid programming of rotation sequences; thirdly, it serves

as an example of the implementation of a relatively com-

plicated instrument-specific logic within a Tangle subclass.

The rotation position recall program flow is illustrated in

Figure 10. Once the Tangle robot network software starts

listening for messages from a client, it stores the most re-

cent MIDI pitchbend value intended for Nudge. Upon re-

ceipt of a MIDI CC 10 message, the most recently received

pitchbend value is stored in a “rotation position preset” ar-

ray capable of holding up to 64 values. Once the pitch-

bend value is stored, it can be accessed by the client: to

access the preset pitchbend, a MIDI NoteOn command is

sent from the client to the server. The rotation position

preset pitchbend value at the index position of the NoteOn

value is then transmitted to Nudge, which responds by ro-

tating to the desired angle.

5. CONCLUSIONS

Musical robotics research contains many examples of drum

systems that use solenoid actuators. Many of these systems

are mechatronically simple to the extent that their musi-

cal expressivity is greatly restricted. The designing and

building of Nudge was undertaken in an effort to address

this issue. By describing Nudge’s subsystems and present-

ing performance evaluations, it is hoped that other musi-

cal roboticists may draw inspiration from the expressivity

demonstrated with Nudge, applying it to their own subse-

quent works.
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