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ABSTRACT 

Timbral Hauntings (2014) is an interactive installation 

system created by Michael Musick that considers the 

impact of echoes from the past on the perception of the 

present and their capacity to induce future sonic expec-

tancy. This paper discusses details in producing Timbral 

Hauntings including motivation, core concepts, and tech-

nical particulars. It specifically discusses the composi-

tional processes using music information retrieval (MIR) 

and feature extraction techniques to classify phrases and 

pull information from the ‘past’ to re-shape the ‘present’. 

Concepts of temporal dynamics will be discussed by ex-

amining the compositional process during analy-

sis/feature extraction, classification and re-structuring, 

and synthesis phases.  

1. INTRODUCTION 

Timbral Hauntings (2014) is an interactive installation 

work that borrows ideas from soundscape analysis and 

the convergence of how “echoes and ethos” reshape the 

present and future. This paper focuses on the exploitation 

of feature extraction and automatic sound classification 

techniques common in the field of music information 

retrieval (MIR) to the creation of Michael Musick’s inter-

active music system installation Timbral Hauntings. Mu-

sick has been involved with the composition and perfor-

mance of sonic ecosystems [1] for four years within the 

Sonic Spaces Project. This composition was approached 

from a desire to address specific problems found in past 

works from the Sonic Spaces Project, specifically, the 

need for controlled decision making, based on larger col-

lections of data. This is accomplished by applying analy-

sis and organizational techniques common in the research 

domain of MIR to an ecosystemic-like [2] interactive 

performance system that builds on past work from the 

Sonic Spaces Project. To accomplish this, modules repre-

senting the specific tasks of the system were composed, 

with considerations of how MIR analysis and classifica-

tion could benefit these processes.  

As is not atypical with many electroacoustic works, this 

piece comes from a concern for the manipulation of tim-

bre and space within music [3]. This led to an immediate 

connection to the timbre-based instrument and sound 

source classification research common in MIR [4]. These 

tools were examined for their potential use in real-time 

timbral-based compositions. Ultimately, this led to the 

development of a system, which analyzes the timbral 

properties of a physical space (in this case a room in 

which it is installed), picks the most frequently occurring 

classification output, then applies these timbral properties 

to the incoming signals captured by microphones. The 

processed input signal is then projected into the space, 

while using classifications results to predict likely future 

acoustic events.  

 This paper presents an overview of the system creation, 

the technical and aesthetic choices that were made, and a 

discussion of the participant experience.   

2. THEORETICAL BACKGROUND AND 

RELATED WORK 

Interactive music systems refer to systems that exhibit 

changed states in accordance to input data at their inter-

face [5]. These systems are typically thought of as ma-

chines that ‘listen’ to a performer via a microphone or 

controllers such as digital keyboards and then analyze the 

incoming signals rhythmic, harmonic, and melodic quali-

ties in order to accompany or follow the human musician. 

There are numerous examples of systems that exhibit 

high-level pitch-driven decision-making processes based 

on user musical input. Prominent examples include 

George Lewis’ Voyager [6], John Biles’ GenJam [7], and 

Robert Rowe’s Cypher [5]. Both interactive systems, as 

well as more general music generating systems are in-

creasingly reliant on MIR-based techniques, including 

machine learning, to achieve the human-machine interac-

tivity sought by composers, such as in [8]. Even with the 

high-level decision-making processes that are being in-

corporated, and the increasing complexity that these types 

of systems exhibit, the primary interaction for the ma-

chine, is that of listening to and reacting to a human per-

former who inputs data directly into the interface. 

Within interactive music systems there are a subset of 

systems which are composed with the capability of listen-

ing to themselves in order to affect their own state [9]. 

These systems may provide data to the interface them-

selves, which is then potentially re-introduced back to the 

system, essentially creating various levels of feedback 

loops. These can exist as control signals, internal audio 

signals, and audio signals mitigated via the room through 

speakers and microphones. This has the potential of cre-

ating a complex relationship between all of the various 
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components and agents within an interactive system, 

whereby changes in any one may cause global system 

changes. In the case that the interface a physical room 

where the system is installed, participants and external 

agents that enter the space, equally become part of this 

complex relationship between all parts. This interplay 

between technology, physical space, and external partici-

pants/community is one of the defining characteristics of 

ecosystemic compositions [10]–[12].  

This project’s focus on the ecosystemtic compositional 

domain with an emphasis on timbre and interactive per-

formance concepts was significantly influenced by the 

work of Agostino Di Scipio. Di Scipio’s Audible Ecosys-

temics project [5] as well as other works from his later 

Modes of Interference [13] project have been especially 

influential in part due to the notion of creating music 

emergent from the complex relationships between all of 

the agents within these systems. Di Scipio’s system com-

positions are able to achieve this emergent quality by his 

explicit shift away from “creating wanted sounds via in-

teractive means, towards creating wanted interactions 

having audible traces” [2]. In a sense, he creates systems 

where the compositional focus is on the relationships and 

possible interactions between the various components of 

the ‘ecosystem’. This idea has been an important meta-

phor in the Sonic Spaces Project
1
, just as it has had an 

important role in influencing the work of others including 

[14].  

The goal for the composition of Timbral Hauntings and 

the study around it has been to apply analysis and deci-

sion making techniques from MIR to individual agents 

within the Sonic Spaces Project. This project also came 

from a desire of exploring potential creative application 

around the data available from and the infrastructure of 

the Citygram project, which can be used to stream sound-

scape feature vectors through its cyber-physical sensor 

network. A complete explanation of the Citygram project, 

including goals, technologies, musical applications, and 

infrastructure can be found in [15]–[18]. Future iterations 

of Timbral Hauntings that leverage the Citygram infra-

structure are currently being developed. This will ulti-

mately lead to the inclusion of multiple physical spaces 

each hosting its own sonic ecosystems, where each sys-

tem is fully interconnected and reliant upon each other. 

3. APPROACH 

The basic approach for the development of Timbral 

Hauntings was to identify an appropriate programming 

environment, the various timbre features that could be 

used to drive the sonic re-interpretation of the present, a 

way of classifying and “picking” the feature sets that 

would accomplish this, and then fine-tuning the system to 

optimize performance for specific tasks. Although a sig-

nificant amount of preliminary planning was involved, as 

the project quickly grew, it diverged away from this orig-

inal formalization.  

                                                
1
 For more about the Sonic Spaces Project please visit:  

http://michaelmusick.com/category/the-sonic-spaces-project/ 

3.1 Program Modules 

It was clear from the beginning that this piece would re-

quire three major sections.  

1. Data Acquisition and Feature Extraction 

2. Machine Learning and Classification 

3. Sound Processing and Performance 

This model closely follows the ideas laid out by Black-

well and Young [19] and built on by Bown et al. [20] in 

which they propose to work within a PfQ modular com-

position system for the direct development of interactive 

systems, such as this one, that leverage extensive analysis 

techniques. In this framework, P are the analysis mod-

ules, f pattern processing (in this case classification and 

hierarchical organization), and Q modules for the sound 

synthesis (or digital signal processing of sound in this 

case). Q, the final module constitutes the main part of the 

ecosystem, as it is here that the agents must use the data 

acquired form P and f to create a self-regulating, inter-

connected sonic ecosystem. 

Within each of these components, separate processes 

were developed to handle the specifics of the task. Con-

ceptually speaking, to design these sections, the decision 

was made to work backwards in order to determine what 

features and/or control signals were needed to produce 

the desired interactions for the sounding agents in the 

final Q stage. The next part of this paper discusses the 

desired interactions in the Q section, followed by what 

was conceived of for P and f in order to facilitate these 

interactions. Following this conceptualization, the system 

modules were built in tandem to ensure the data that was 

being passed around would work the way it was intended.  

3.1.1 Signal Processing - ( Q, The Final Stage ) 

One of the main driving ideas was the creation of a sys-

tem where interactions of the sounding agents heavily 

utilized the information of the past to reshape the present 

and predict the future. The resulting music that emerges 

from the system is then always directly tied to the echoes, 

events, and happenings of the past. The qualities of the 

past are thereby embedded in the nature of agents as they 

are created within the system to interact with the sonic 

energy present in the room. 

The major challenges for this problem included: (1) de-

termining how to extract meaningful features that would 

allow the system to choose a frequently occurring past 

event and (2) how to embed these features into agents to 

transform the current audio events in the space. The 

transformations that were explored included filtering and 

shifting of current “live” sonic events through the appli-

cation of past sonic event characteristics represented by 

extracted features. This project also worked to explore 

ways the system could try and predict the next sounding 

events in the space by utilizing frequently occurring 

phrases that would be the ‘same’ sonic event likely pro-

duced in the future. 

In addition to testing and prototyping the features that 

could be used as timbral re-interpreters, a need to obtain 

control signals that could be used for the further re-
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interpreting of current audio events was also found. Spe-

cifically, determining a control signal that could be used 

to alter the temporal speed and direction of the timbre 

events. Finally, from the identified interaction goals it 

was known that a control signal needed to be found that 

could be used to efficiently evaluate moments of the pre-

sent against near-matches of the past.  

3.1.2 Analysis and Feature Extraction - ( P ) 

After determining a need for both timbral and gestural 

features for the synthesis stage, the project focused on 

outlining possible ways of extracting this data. The prob-

lems that had to be solved in the analysis section includ-

ed: (1) finding suitable features to describe the timbral 

and gestural properties of audio events and (2) imple-

menting ways to extract and store those features in a real-

time process for later use. Ultimately, as will be dis-

cussed below, it was determined that the identification of 

timbre classes and the application of those timbre classes’ 

characteristics through a filter would need to be handled 

by separate signal processing techniques.  

It became clear that a secondary decision-based feature 

set, describing the past, was also needed to provide fur-

ther control variables for agents in the Q module. The 

decision to pursue the analysis of gesture came from re-

search in the area of music theory that uses common ges-

tural motifs to help analyze moments in classical music 

compositions [21]. This was the inspiration for trying to 

represent and classify frequently occurring gestures. 

3.1.3 Decision Making and Classification - ( f ) 

After determining the features that would yield the neces-

sary control signals and feature sets for the Q stage, a 

final step to consider was to explore an appropriate algo-

rithm for classification that could choose which feature 

sets to pass to agents at their time of creation in the Q 

stage. Multiple means of machine learning approaches 

were thus considered. However, the aesthetic goals of this 

piece were to create a system, which could be used for 

public installations or with improvising ensembles. The 

nature of the typical sonic events of either would be diffi-

cult to “know” prior to performance. Additionally, this 

piece is concerned with allowing for any events in a 

space to be considered as a potentially valid historical 

sonic event that could affect future agents and interac-

tions. This eliminates most techniques, because super-

vised machine learning algorithms require labeled train-

ing data prior to deployment. Therefore it seemed obvi-

ous that unsupervised, real-time learning techniques 

would be more appropriate for providing this flexibility. 

3.2 Environment 

The Sonic Spaces Project, and as such, Timbral 

Hauntings are live systems that are intended to be in-

stalled in spaces where external agents and participants 

can interact with, and listen to the compositions as they 

emerge and fill a room. Much of the work involving MIR 

has utilized offline approaches to analysis, training, and 

modeling using tools such as MATLAB and Python. Un-

fortunately, it is difficult to do real-time audio in 

MATLAB, which has been a standard for MIR research 

[22], especially when using it on the OS X platform. Alt-

hough the MATLAB environment was used for early 

prototyping of feature extraction techniques and composi-

tion of potential interactions, this composition was moved 

to SuperCollider in order to facilitate real-time interac-

tion. This programming environment allows for real-time 

audio processing, and is well equipped to handle the 

types of analysis and processing that were under consid-

eration for the project.  

Much of the Sonic Spaces Project’s work, including 

system implementation has been accomplished in the 

SuperCollider environment. SuperCollider allows for 

considerable amounts of flexibility in coding practice and 

it is a very efficient audio processing and synthesis envi-

ronment. For custom algorithms that are unavailable in 

SuperCollider, it is not exceedingly difficult to implement 

in native C++. It is a proven client for using machine 

listening applications and includes a growing base of 

researchers writing third party unit generators (UGens) 

and also using SuperCollider’s analysis and MIR capabil-

ities for composition purposes [23].  

Ultimately, the final implementation in SuperCollider 

utilized external machine listening and MIR libraries. 

However, the development and testing process included 

working between MATLAB and SuperCollider in order 

to continue prototyping interactions for each stage of the 

system and to insure complete understanding of how each 

analysis algorithm was being put to use. 

3.3 Deployment Tweaking and Testing 

The plan for this system was to build each module up 

piece by piece, ensuring that communication between the 

modules was considered throughout the development 

process. The system was to be built by verifying ideas 

and techniques through a combination of work in 

MATLAB and SuperCollider. This way, implementations 

of MIR specific techniques could be explored to ensure 

understanding of the expected outcomes before using the 

equivalent functions in SuperCollider.  

4. APPLIED TO A SYSTEM 

This section discusses the implementation of the system 

and more fully explores the development flow of the 

composition. It also gives specifics as to how the system 

works, and how compositional choices were made. Note 

that even though the system was not developed sequen-

tially from start to finish but was rather conceptualized 

backwards, the presentation of various components will 

be described and detailed here in the order that it is repre-

sented within the computer code. 

4.1 Initial Considerations 

In order to consider the entire physical space as the inter-

face for a system, it is important to provide a sufficient 

number of audio inputs to cover the space. This is espe-

cially important when trying to capture the spatial timbral 

characteristics. The compositional focus in this project 
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was not on instrument-specific timbre but rather on the 

collective timbre of physical spaces. For this reason, ex-

cept during stage Q, all feature extraction stages take a 

mix of an array of microphones covering the space. Dur-

ing the initial stages of development as well as early 

presentations of the work, all of the spaces where the 

Timbral Hauntings system has been installed have been 

relatively confined; therefore two microphones are cur-

rently used. The number of microphones is flexible, and 

for installation of the system in larger spaces, more mi-

crophones can easily be incorporated. 

One key aspect of MIR is to develop and select appro-

priate low-level acoustic descriptors as a way of improv-

ing results – a classic garbage-in-garbage-out (GIGO) 

system. This concept has been applied at every stage of 

the signal processing chain and is one of the reasons for 

utilizing high-quality hardware and transducers. Of the 

highest importance is the use of high-quality micro-

phones, at least in regards to the Sonic Spaces Project. 

Consequently feature sets, when used for analysis or oth-

er digital signal processing applications, tend to produce 

more robust results when using these high-quality input 

signals. 

4.2 Development of the Timbral Analysis and Classi-

fication System 

The system starts by taking in the mixed audio signal 

from the room’s microphone array. This signal is then 

routed to various components that require audio input for 

analysis. In order to classify the room’s various timbre 

events, Mel-Frequency Cepstrum Coefficients (MFCC’s) 

[24] were used. MFCC’s have found wide use for auto-

matic musical instrument recognition and have been 

found to robustly reflect timbre in general. For this pro-

ject, a DFT with a hann window size of 1024 samples, 

hop size of 50%, and sampling rate of 44.1kHz proved to 

provide acceptable results when prototyping the system 

in MATLAB. These parameters did not change after 

evaluating and testing other parametric values in the final 

SuperCollider implementation. In SuperCollider, the 

frames from the DFT are passed to the MFCC UGen. For 

the current implementation, it has been found that using 

13 MFCCs resulted in efficient classification results. The 

MFCC UGen returns a control rate signal, which is then 

passed through a one-second long moving averaging fil-

ter, which serves to remove high-frequency irregularities 

caused and creates a feature signal that appropriately de-

scribes the room’s timbral characteristics. This resulting 

control rate signal from this MFCC SynthDef is then 

passed to the classification SynthDef.   

In order to do classification of salient acoustic events, a 

frequency-domain based onset detector was used for 

acoustic event detection [25]. This onset detector allows 

for the filtering of novel acoustic events, which are then 

passed through, a frequency-bin based whitening process 

[26] before threshold-based triggering occurs. For the 

type of input expected in this system, a weighted phase 

detection algorithm worked well in tracking both changes 

in amplitude, pitch, and novel sound sources. The trigger 

threshold was also assigned to an adaptive process, which 

scaled the threshold down, over the course of 16 seconds, 

after a new timbre classification occurs. (This is a user 

tunable parameter, and different values work better in 

different spaces.) This was found to limit re-triggering of 

a single sonic event.  

When an event is identified from the onset detection 

UGen, a trigger is passed to the classifier UGen causing it 

to analyze the extracted features. As mentioned above, an 

unsupervised learning algorithm was determined to pro-

vide the desired flexibility for this project. For this rea-

son, a real-time k-means clustering algorithm was im-

plemented for the classifier [27]. This classifier works by 

re-computing the k centroids every time a new acoustic 

event is detected. It was found that determining the opti-

mal number of k to use is still an active area of research 

lacking common practices [28]. For that reason, multiple 

k values were auditioned. Currently, six seems to provide 

a suitable solution, although this too is a user adjustable 

parameter where varying values may produce more ap-

propriate results depending on the characteristics of the 

installation space. Originally, the number for centroids 

was determined and equal to the number of expected tim-

bres. However, it was found that choosing a number 

slightly larger than the expected number of timbres re-

sults in better accuracy for the system.  

Other options considered during initial prototyping in 

MATLAB, included; Linear Predicative Coding (LPC) 

coefficients, and single value spectral measures, such as 

spectral centroid and spectral flatness. MFCCs seemed to 

provide a large enough feature set to create acceptable 

results with minimum samples in the k-means algorithm. 

Figure 1, shows a typical k-means representation of a 

whistle; these 13 coefficients are then passed to the clas-

sifier as an array of floating point numbers. Alternative 

machine learning approaches have also been considered. 

However, as mentioned earlier, a willingness to accept all 

possible sonic events is important to the theoretical goals 

of this piece. Therefore, machine-learning techniques that 

require pre-labeled, supervised training data were not an 

option. 

Figure 1. Relative MFCC Coefficient output for a whistle. 

These values are passed to the K-Means classifier as an 

array of floats. 
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4.3 Development of Gesture Feature Extraction 

During prototyping, the resulting audio from the Q mod-

ule did exhibit convincing characteristics of the analyzed 

audio. However, the resulting sonic material was too sim-

ilar to the original acoustic events, and more abstraction 

in the composed interactions seemed necessary. For this 

reason, it was decided to explore the use of additional 

control signals that could be embedded within each of the 

agents, along with the timbre characteristic descriptors in 

the Q module. This focused on the identification of tem-

poral gesture features extracted from audio as a way of 

further transforming the end result. Fundamental fre-

quency estimations from the identified timbre class were 

originally considered. However, it was decided that this 

parameter should be a separate descriptor of past spatial 

sonic events that are not necessarily the same as the tim-

bre classifications. This provided a decoupling from the 

timbre features used, as they were being applied to the 

synthesis module, resulting in a more interesting interac-

tion on the part of the agents.  

The motivation for exploring gestures came from a mu-

sic theory study on using gestures of pitches to describe 

common anticipations in classical era compositions [21]. 

This led to another discussion in the same source, which 

examined the mechanics of gesture as they relate to hu-

man physical motion and how motion changes gradually, 

“ramping in and out of the motion.” To track changes in 

musical gesture, the system computes the first derivate of 

an autocorrelation-based fundamental frequency estima-

tor. The pitch detector was limited to frequencies be-

tween 80 and 3 kHz and also requires a minimum ampli-

tude threshold of 0.01 Root-Mean-Squared (RMS) as 

well as a minimum peak threshold, which helps eliminate 

octave errors.  

 To normalize these features to a linear scale they are 

converted to MIDI note numbers, which in SuperCollider 

are represented as floating point numbers, and not limited 

to integer representations. These values are then passed 

through a moving average filter of 512 samples. Finally, 

the slope between these floating-point MIDI values is 

measured. Figure 2 shows an output signal captured by 

this process. These events are recorded, and after the 

classifier chooses a class, the most recent event, which 

matches the most frequently occurring class, is passed to 

the Q module where it is embedded in the newest agent 

as a control signal.  

In order to classify these events, it was necessary to re-

duce feature dimensions to a manageable size to an ap-

proximately 6-18 feature size range, which matches the 

size range used for MFCC classification. This is accom-

plished by passing the signal through a curve-fitting algo-

rithm and using the computed coefficients (except for the 

intercept value) as the features to describe an acoustic 

event. No such solution exists in SuperCollider at this 

moment, and attempts to create a non-optimized process 

through SuperCollider’s client language severely slowed 

down system performance. A solution that was developed 

entailed sending gesture signals to Python via a Unix 

terminal process. This allows access to Python’s Numpy 

polyfit method, and the unloading of processing from 

SuperCollider: after Python has computed the result, the 

coefficients are returned to SuperCollider. The output of 

the Python process is shown in Figure 3. These features 

are then passed to a separate classifier, which classifies 

and eventually chooses a gesture class.  

4.4 Choosing A Class 

The classifiers initially need to be self-trained with a us-

er-defined number of samples. Once a training count 

threshold is passed, the classifiers outputs a class based 

on the computed k-centroid values for each feature sam-

ple passed in. The classifiers track the most frequently 

occurring feature classification by employing a simple 

array count, equating to an indexed slot for each potential 

class ID. Once the classifiers registers a critical number 

of samples, they choose the most frequently occurring 

class by picking the index of each array with the highest 

count.  

Once a “most frequent” class is chosen, the classifiers 

reset their counts to 0. However, the system keeps their 

historical training data for future classification decisions. 

This allows for changes in the timbral events that may 

occur in the installation space while considering histori-

cal data as an ever-present factor, and takes into consid-

eration the system’s own output to the space as a poten-

tial source of influence. 

When a class is  chosen the system selects a recent, cor-

responding audio recording for the timbre feature set and 

a control rate recording for the gesture feature set. These 

recordings are then transferred from short-term storage 

over into new, local-private buffers, which are then hand-

ed over to the Q module, where they are assigned to a 

newly created agent, along with pointers to the feature 

extraction control signals from P. The short-term class 

Figure 3. Visualizing a 10-degree polynomial best-fit curve 

produced by Python for a gesture event.  

Figure 2. A 3” gesture generated from rotating tingsha bells.  
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audio and control recording buffers are also reset at this 

point, along with the entirety of the classification module. 

Figure 4 shows an overview of the P and f process, in-

cluding the feature extraction, temporary recording buff-

ers, and classifiers. 

4.5 Q Module 

The Q module is where new agents are created and also 

embedded with “characteristics” of the past. These agents 

are embedded with the identified “most-frequent” feature 

sets, which are used to: 

1. Process current live signals occurring in the space.  

2. Identify likely “future” events for playback, effec-

tively predicting the “future.” 

The MFCC’s were originally going to be used as a way 

of obtaining filter coefficients for the re-interpretation of 

live audio by agents. However, the Linear Predictive 

Coding (LPC) technique was far more suited for this task. 

The LPC algorithm effectively produces filter coeffi-

cients that can be used for resonant filters [29], which 

reflect the a signal’s spectrum. Typical applications of 

this technique have been to separate a signal’s spectrum 

from its excitation function, which offers a composer the 

ability to change parameters of the signal independently 

and then resynthesize the altered signal (e.g. Paul Lan-

sky’s Idle Chatter). For the purposes of this system, the 

LPC technique is used solely as a way of analyzing past 

spectra and shaping the spectra of new audio events.  

Full audio recordings are captured and stored for poten-

tial use in this module during the classification process. 

Recordings can be up to 16-seconds in length if no other 

event triggers first. This 16-second long recording is then 

truncated to remove any silence, and only the portion of 

the signal containing active audio is passed to the agents 

in the Q module. This signal is then run through the LPC 

analyzer/filter (from this point forward, this signal will be 

referred to as the analysis signal). 

By storing complete audio signals, the Q module can 

optimally process them prior to routing through the LPC 

UGen. This module does a number of processes in order 

to increase the “richness” of interactions. Chief among 

them is to alter the playback speed of the analysis signal. 

This is accomplished with the gesture feature that is also 

passed to the module. The gesture signal is slowed down 

by 25% of the original speed and then used as a scalar for 

the playback speed argument of the analysis signal. This 

gives the playback speed argument speed profiles, which 

have been derived from the historical events of the instal-

lation space. The playback speed is normalized to a float-

ing-point number between ± 2.0 times the original speed, 

with negative values causing a reverse playback to occur.  

The analysis signal is then run through a low pass filter 

with a cutoff of 8 kHz. Traditionally, LPC synthesis has 

been found to produce optimal acoustic results at lower 

sampling rates as it was developed to model speech spec-

tra. Unfortunately, this system requires a sampling rate 

that is 44.1 kHz or higher. Dampening high frequency 

components has been used as form of compromise to 

achieve effective results. Subjectively, during prototyp-

ing, this process did allow for clearer results to occur 

when using the analysis signal to drive impulse trains 

running through the filter.  

Next, the analysis signal is passed through a pitch shift-

ing UGen, which uses a synchronous granular synthesis 

algorithm. The shift factor for this UGen is inversely pro-

portional to the timescale of the playback, compensating 

for some of the pitch shifting effects caused during that 

process. However, at the outer edges this scaling does 

breakdown, which serves as an effect in itself.  

Finally, the analysis signal’s values are extracted before 

compression and normalization occur. When the uncom-

pressed signal is above a tunable RMS threshold, the 

compressed signal is allowed to pass, otherwise it is gat-

ed. This allows for a stronger signal to be passed to the 

LPC module while suppressing background noise.  

This is the final form of the analysis signal before it is 

routed to the LPC UGen. The LPC UGen then computes 

128 poles, operating with a 512 sample, double buffer to 

handle the changing of filter coefficients. The input sig-

nal that is passed through the filter is delayed by 2 se-

conds from the original input in the room. This signal 

does not go through a true whitening process, as is sug-

gested for LPC impulse signals, but is subjected to multi-

ple stages of resonating comb filters and an all-pole re-

verb algorithm, which serve to broaden the spectrum with 

frequencies from the signal itself. When passed through 

the LPC filter, this signal is given characteristics of pre-

vious “frequent” occurring sonic events that have oc-

curred in the system.  

Figure 4. P and f flow diagram. After the classifiers make a decision, they send the candidate buffers to the new agent in 

Q, along with the feature extraction control signals. 
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In addition to the “re-shaping” of present material in the 

historical sounds of the past, this system also tries to pre-

dict the future through the examination of the present 

against the past. During the analysis and recording pro-

cess, the time-stamped MFCC values are stored in a sepa-

rate signal buffer at a granularity of 20ms. When the can-

didate timbre class is chosen, the classifier takes this 14-

channel signal along with the audio signal. This signal is 

then passed to a function that transforms it into a KD-

Tree [30], where timestamps serve as the identifier values 

for each node of the tree. This tree structure is then em-

bedded during the creation of new agents in the Q mod-

ule. The agent analyzes the ‘present’ signal, as it looks 

for nearest-neighbor matches with a tunable threshold of 

the current MFCC values in relation to the KD-Tree. If a 

match within a certain threshold is found, then the time-

stamp key is used to grab grains of sounds from the 

stored audio signal that are 20ms ahead of the time-

stamp. These grains are then played back through the 

system, where pitch, position and playback speed are a 

function of the distance between the two MFCC sets.  

This interaction is particularly interesting, as it reliably 

matches current moments in the room to ‘candidate’ sig-

nals in the agent’s tree. This ‘playback’ of what the sys-

tem has decided is the future is usually also a close 

enough match as to confuse the participants’ perception 

as to what sounds occurred from agents in the room, or 

were created from the system. This interaction also has a 

tendency to ‘re-trigger’ itself, creating an interconnection 

between components, which ultimately adds to a sense of 

progression in the piece, as it creates rhythmic moments 

from grains of sounds that slowly fade away as the total 

composition changes.  

In addition to the two main interactions that each agent 

is created with (transformation of the present and predic-

tion of the future), they are also passed pointers to the 

internal control busses with the feature extraction signals 

from P. These signals include; a 12-tet chromagram that 

is sampled at every onset and is the average of the last 

identified phrase, spectral flux, and RMS. These are used 

as further control over the composed interactions in the Q 

module. Live control signals also allow the agents in Q to 

monitor sonic saturation of the space. When this occurs, 

the agents either die off, or take measures to reduce their 

sonic output to protect the balance of the ecosystem. 

These processes described in this section are recreated 

in each agent for each new class chosen by the classifier. 

The number of candidates that can be playing at any one 

time is currently set to 4, but this is a user adjustable val-

ue. As new agents are created, old ones die out.  

5. SUMMARY 

This work asks participants in the installation space to 

consider the impact and influence that moments in history 

can have on the present and future. The echoes of the past 

are always with us, and Timbral Hauntings works to ex-

ploit this idea by building a memory of these events and 

choosing the most frequently occurring ones to directly 

change the course of the future. In this case, hauntings of 

these memories are embedded in the ‘nature’ of agents as 

they are created in the system. The system is programmed 

so that only a small group of agents can survive at any 

given time. This means that as new agents come into be-

ing, older ones die out. The contributed sonic events are 

what is left of them to haunt the system.  

This piece is best suited in spaces that reinforce the no-

tion that ‘we are always with the past.’ It is best if relics, 

mementos, and history can exist in the space of the sys-

tem: affecting the sonic characteristics of the room, and 

reminding participants of the people and events that have 

come before them. Spaces that have their own unique 

sonic characteristics are also preferred. They impart their 

resonant frequencies, room nodes, and reverberant quali-

ties into the composition itself. With the room as the in-

terface, a strong interrelationship occurs between system, 

participants, and space. As can be seen in Figure 5, the 

piece is intended to offer room for participants to simply 

sit, ponder, and listen, as the music that emerges changes 

in response to the sonic events occurring in the space. 

Participants are also encouraged to influence the future of 

the system by contributing sonic energy to the space. 

They are free to use any of the instruments supplied 

around the room, or to make sound in anyway that they 

are inspired to. Regardless of what they do, their presence 

in the space effects the future, whether it is directly con-

tributing sonic material, or simply existing in the space, 

allowing their mass to change the sonic characteristics of 

the room, and disturb potential nodes. This piece main-

tains strong relationships between the sonic events of the 

space; whether created from digital agents or external 

physical agents, the room itself, the past, and the present. 

All components rely on each other to create the final mu-

sic that emerges during a performance of the ecosystemic 

composition and installation, Timbral Hauntings
2
. 
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