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ABSTRACT

This paper describes a method that estimates the appropri-
ate violin fingering pattern according to the player’s skill
level. A violin can produce the same pitch for different
fingering patterns, which generally vary depending on skill
level. Our proposed method translates musical scores into
suitable fingering patterns for the desired skill level by mod-
eling a violin player’s left hand based on a hidden Markov
model. In this model, fingering is regarded as the hid-
den state and the output is the musical note in the score.
We consider that differences in fingering patterns depend
on skill level, which determines the prioritization between
ease of playing and performance expression, and this prior-
ity is related to the output probability. Transition probabil-
ity is defined by the appropriateness and ease of the transi-
tions between states in the musical composition. Manually
setting optimal model parameters for these probabilities is
difficult because they are too numerous. Therefore, we de-
cide on the parameters by training with textbook fingering.
Experimental results show that fingering can be estimated
for a skill level using the proposed method. The results of
evaluations conducted of the method’s fingering patterns
for beginners indicate that they are as good as or better
than textbook fingering patterns.

1. INTRODUCTION

In a violin, the same pitch can be produced by several fin-
gering patterns, and violin players decide which fingering
pattern to use. Fingering decision is difficult for begin-
ners because they lack experience. However, even if the
player has considerable experience, fingering decisions of-
ten require trial and error, because the optimum fingering
pattern for a specific transition is not easy to determine af-
ter only one try. Thus, automatic fingering estimation can
help players at various skill levels.

The optimum fingering differs according to a player’s
skill level. For low-skill players, fingering that is easily
played is optimum, whereas for high-skill players, finger-
ing that allows the best performance expression is opti-
mum. Thus, violin fingering estimation must be based on
skill level.

Some studies have focused on fingering estimation for
a plucked or bowed string instrument [1–5] or for the pi-
ano [6–8]. The methods proposed in these studies estimate
the easiest fingering and cannot recommend fingering pat-
terns for various skill levels. Other studies have transcribed
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fingering from audio [9, 10] or video [11]. In these tran-
scriptions, performance expression is considered because
of differences in human performances. However, these
methods transcribe the fingering only from a recording of
the performance.

Our objective is to estimate the fingering patterns for mu-
sical compositions according to the skill level of the violin
player. The violin player decides whether playing needs to
be easy or whether performance expression is appropriate.
We also realize that this priority is influenced by the note
length. If the note is short, ease of play becomes a higher
priority because playing a succession of short notes is more
difficult. When the note is long, expression has a higher
priority because playing longer notes is easier. Expres-
sion also has a higher priority when the skill level is high.
From this point of view, we previously proposed a finger-
ing estimation method [12]. However, in that method, the
model parameters are set manually, which, in addition to
the highly complex model structure, result in difficulty tun-
ing the parameters of the model.

In this paper, we model violin fingering using the concept
underlying the hidden Markov model (HMM). The differ-
ence between our proposed model and HMM lies in the
fact that the transition probability depends on the obser-
vation sequence. We regard fingering as the hidden state
and the notes in the musical composition as the output.
We define the priority of performance expression based on
note length and skill level, and this priority is used to de-
termine the output probability. Because note length also
influences ease of transition from one fingering pattern to
another, we define the degree of change between fingering
patterns based on note length, and this degree of change is
related to transition probability. Empirical determination
of the numerous parameters required by output and tran-
sition probabilities is extremely difficult; therefore, most
parameters are estimated from textbook fingering patterns.
Our new method eliminates the need for manually setting
the model parameters.

2. VIOLIN FINGERING

2.1 Strings

A violin has four strings, each of which has a different tone
color and pitch range because of differences in thickness
and material. The four strings are normally tuned to G3,
D4, A4, and E5 in descending order of thickness. Because
the pitch ranges of different strings overlap, the same pitch
can be produced by pressing different strings at different
positions.
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2.2 Fingers

The strings are pressed using all fingers except the thumb.
The four fingers are numbered from one (index finger) to
four (little finger). A string that is played without being
pressed is called an open string and is numbered zero. An
open string has a different tone color because none of its
vibration is absorbed by a finger.

2.3 Difference by Skill Level

As skills develop, the player can choose many strings and
use vibrato, a pulsating change in pitch by slightly shaking
the left hand while a left finger presses the string. Choos-
ing string and using vibrato are important in performance
expression.

Easy fingering and fingering considering performance ex-
pression are often different. For example, open string is
easy because no pressing is done; however, the player can-
not use vibrato because it cannot be produced with an open
string. Thus, players use different fingerings depending on
skill level.

3. VIOLIN FINGERING MODEL ACCORDING TO
SKILL LEVEL

In this paper, we model violin fingering patterns similar
to HMM, as shown in Figure 1. The model is somewhat
different from HMM; the difference is that state transition
depends on output sequence. The hidden state sequence s

is the left hand state sequence, and output sequence o is
the note and rest sequence in the score. We assume that the
state changes for every note and that the state sequence is
a Markov process.

To simplify problem, the model has the following restric-
tions: the score is monophonic, and only the factors pitch,
note length, and rest length are considered by this model.

3.1 Hidden State

In order to ensure a unique correspondence between a sin-
gle pitch and a state, we define the HMM’s hidden state as
the position of the left hand. The position of the left hand is
described by the hand position and finger interval, as well
as the string number and the finger number, which typi-
cally describe a fingering pattern. The hand position and
finger interval should be steady; these elements are impor-
tant when the appropriateness of the hand state in long span
is being considered.

These four elements are represented by the following vari-
ables: the string number is xSN, the finger number is xFN,
the hand position is xHP, and the finger interval is xFI. The
hidden state is expressed as follows:

sn = {xSN
n , xFN

n , xHP
n , xFI

n }. (1)
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Figure 1. Model of a violin fingering pattern

3.1.1 String Number

We numbered the E string, A string, D string, and G string
as 1, 2, 3, and 4, respectively.

3.1.2 Finger Number

We numbered the index finger, middle finger, ring finger,
little finger, and open string as 1, 2, 3, 4, and 0, respec-
tively.

3.1.3 Hand Position

The general position differs from the actual position de-
pending on whether the note is natural, sharp, or flat. In
this paper, we use the fret number of the index finger po-
sition under the assumption that a violin has frets. We as-
sume that each string has 24 frets.

3.1.4 Finger Interval

We use the combination of the intervals between each fin-
ger. A finger not pressing a string does not have to be de-
fined if only one note is played; however, we define all
four fingers because even if a finger is not currently press-
ing a string, it is positioned according to the next note or
on the basis of the previous note. We assume that the inter-
val between each finger is a whole tone or a half tone. The
number of combinations is 23.

3.2 Output Sequence

One hidden state corresponds to pitch p, note length l, and
rest length r. In terms of fingering, note length l and rest
length r define the priority of the performance expression
(expressiveness e) and the ease of transition from the cur-
rent fingering pattern to the next (changeableness c), as fol-
lows:

on = {pn, ln, rn} = {pn, cn, en}. (2)

3.2.1 Expressiveness

High-skill players can play with greater ease and expres-
siveness than low-skill players. However, even if skill level
is high, expressiveness is relatively low when the note length
is short. Conversely, even if skill level is low, expressive-
ness is high when the note length is long. Consequently,
the same expressiveness can be achieved, even if the skill
level is different, by changing the note length. Therefore,
we determine expressiveness from both note length and
skill level, as shown in Figure 2. Using this relation, we
can estimate the appropriate fingering for any skill level in
the unified framework.
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Figure 2. Relation among expressiveness, note length, and
skill level
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Based only on note length, the longer the note, the greater
the ease and expressiveness it can be played with. We con-
sider that variation of expressiveness is small when note
length is overly long. Therefore, we use logarithms to de-
scribe the relation between note length and expressiveness.

On the other hand, based only on skill level, the higher
the skill level, the greater is the expressiveness. The rela-
tion between expressiveness and skill level is assumed to
be linear.

Thus, considering both note length l and skill level wl,
expressiveness e is determined as follows:

en = wl log(1 + ln). (3)

When wl is zero, which is the level for the least skilled
players, expressiveness is always zero, regardless of note
length.

3.2.2 Changeableness

We consider that changeableness is high when note length
or rest length is high. First, the hand can easily change to
the fingering pattern of the next note when the current note
or rest is long. Second, the possibility that the current mu-
sical phrase is ending is high when the current note or rest
is long. A musical phrase needs a similar tone throughout
and smooth transitions of the fingers; therefore, it does not
often require a significant transition of the finger positions.

Thus, changeableness cn is decided by the current note
length ln and rest length rn. Because the degree of influ-
ence of ln and rn on cn are not equal, c is defined with
weight wr, as follows:

cn = ln + wrrn, (4)

where wr > 1.

3.3 Estimation of Optimum Fingering

Assuming that the optimal fingering has the highest likeli-
hood among all the state sequences considered from a note
sequence, the optimal fingering is given as follows:

q̂ = argmax
q

πq0

N−1
∏

n=1

aqn−1,qn(on)
N−1
∏

n=0

bqn(on), (5)

where q is the state number sequence corresponding to the
note sequence, π is initial probability, a is transition prob-
ability, and b is output probability. Because the number of
state sequences increases exponentially with the number of
notes, calculating the likelihood of all state sequences is re-
alistically difficult. However, searching for the maximum
likelihood state sequence is solved based on the Viterbi al-
gorithm.

4. HMM’S PARAMETERS

HMM requires the following parameters: initial probabil-
ity, transition probability, and output probability. These
are usually estimated using the Baum-Welch algorithm;
however, our study includes many states, which makes the
Baum-Welch algorithm inappropriate. Therefore, we con-
sider the probability of each element individually, and pos-
tulate the distribution of the transition probability, which
has many state combinations.

4.1 Initial Probability

Initial probability πi is the probability of being in state si
when note number n is zero. We define initial probabil-
ity by assuming that the elements are independent of each
other.

Each probability of string number, finger number, hand
position, and finger interval is defined as PSN(x

SN
i ),

PFN(x
FN
i ), PHP(x

HP
i ), and PFI(x

FI
i ), respectively. Initial

probability πi is formulated as follows:

πi = PSN(x
SN
i )PFN(x

FN
i )PHP(x

HP
i )PFI(x

FI
i ). (6)

4.1.1 String Number

We consider that initial probability does not depend on
the string. Therefore, PSN(x

SN
i ) is uniformly distributed

among the four strings; that is, 1/4.

4.1.2 Finger Number

We define PFN(x
FN
i ) as the appearance probability of xFN

in the training data under the condition that xFN = 0 is
weighted by the reciprocal of the appearance probability
of the pitch that an open string makes. This is because
xFN = 0 can only produce the pitch of an open string;
therefore, the appearance probability of xFN = 0 is low.

4.1.3 Hand Position and Finger Interval

We define PHP(x
HP
i ) and PFI(x

FI
i ) as the appearance prob-

ability of xHP and xFI in the training data, respectively.

4.2 Transition Probability

Transition probability ai,j(on) is the probability of the state
changing from si to sj when the note number changes from
n to n + 1. Transition probability must consider the ap-
pearance probability of the destination state and the prob-
ability of state change. The appearance probability of the
destination state is calculated in the same way as the ini-
tial probability. The probability of state change is defined
by the postulate of the probability distribution of variation.
The relation between output o and the state transition is
influenced only by changeableness c. When changeable-
ness is high, the transition probability cannot be based on
variation. Therefore, we assume that the dispersion of the
probability distribution of variation depends on change-
ableness.

When the relation among elements is considered, the prob-
ability of the finger intervals depends on the hand position.
Other elements are independent of each other. Therefore,
the probabilities of the elements xSN, xFN, xHP, and xFI

are defined as PSN(x
SN
j |si, cn), PFN(x

FN
j |si, cn),

PHP(x
HP
j |si, cn), and PFI(x

FI
j |si, cn, xHP

j ), respectively.

Transition probability ai,j(on) is formulated as follows:

ai,j(on) ∼ PSN(x
SN
j |si, cn)× PFN(x

FN
j |si, cn)

× PHP(x
HP
j |si, cn)× PFI(x

FI
j |si, cn, xHP

j ). (7)

The probability of each element is described as follows.

4.2.1 String Number

We consider that the probability of a string number de-
pends only on movement range. In general, the string of-
ten remains the same for some notes. Therefore, distri-
bution of transition of a string number is concentrated at
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xSN
i = xSN

j , and we postulate that PSN(x
SN
j |si, cn) is the

following Laplace distribution:

PSN(x
SN
j |si, cn) ∼ fLap(x

SN
j ;xSN

i , k1cn), (8)

where fLap is the probability density function of the Laplace
distribution as follows:

fLap(x;µ, φ) =
1

2φ
exp

(

−|x− µ|
φ

)

. (9)

Because the dispersion of the Laplace distribution σ2 is
2φ2, we define k1 to satisfy the following equation:

s2 = 2(k1c̄)
2, (10)

where s2 is the dispersion of the training data’s xSN
n −xSN

n−1

and c̄ is the average of the training data’s c.

4.2.2 Finger Number

We consider that the probability of a finger number de-
pends only on the finger number of the target fingering
pattern. Thus, PFN(x

FN
j |si, cn) is defined as follows:

PFN(x
FN
j |si, cn) = PFN(x

FN
j ). (11)

4.2.3 Hand Position

We consider that the probability of a hand position depends
on both the hand position of the target fingering pattern and
the movement range. We postulate that the probability of
the movement range is a Laplace distribution for the same
reason as that of the string number. Considering both the
hand position of the target fingering pattern and the move-
ment range, PHP(x

HP
j |si, cn) is defined as follows with

weight wHP :

PHP(x
HP
j |si, cn)

∼ fLap(x
HP
j ;xHP

i , k2cn)
wHPPHP(x

HP
j )1−wHP . (12)

Because the hand position change is easy when the current
finger number is the open string (xFN

i = 0), k2 is defined
as follows:

k2 =

{

k2,1 (xFN
i = 0)

k2,2 (xFN
i ̸= 0)

. (13)

k2,1 and k2,2 are defined in the same way as k1.

4.2.4 Finger Interval

The probability of the finger interval does not depend on
the finger interval of the target fingering pattern if
the hand position changes. Therefore, if xHP

i ̸= xHP
j ,

PFI(x
FI
j |si, cn, xHP

j ) is a uniform distribution; that is, 1/23.

If xHP
i = xHP

j , we consider that PFI(x
FI
j |si, cn, xHP

j ) de-
pends on both the finger interval of the target fingering pat-
tern and the movement range. We define the movement
range of a finger interval M(xFI

i , xFI
j ) as the sum of the

distance between the previous fret number and the current
fret number for each finger, and postulate that the prob-
ability of the movement range is an exponential distribu-
tion because the distribution of transition of M(xFI

i , xFI
j )

is concentrated at zero. Thus, PFI(x
FI
j |si, cn, xHP

j ) is de-
fined as follows:

PFI(x
FI
j |si, cn, xHP

j )

∼
{

1/23 (xHP
i ̸= xHP

j )
PwFI

ExpPFI(x
FI
j )1−wFI (xHP

i = xHP
j )

, (14)

PExp ∼ 1

k3cn
exp

(

−
M(xFI

i , xFI
j )

k3cn

)

, (15)

where k3 is defined as follows for the same reason as that
for the hand position:

k3 =

{

k3,1 (xFN
i = 0)

k3,2 (xFN
i ̸= 0)

. (16)

k3,1 and k3,2 are defined similar to k1 for exponential dis-
tribution.

4.3 Output Probability

Output probability bi(on) is the probability that note on
is outputted from state si. Pitch p and expressiveness e
are independent of each other, and their probabilities are
defined as Pp(pn|si) and Pe(en|si), respectively. Output
probability bi(on) is formulated as follows:

bi(on) = Pp(pn|si)Pe(en|si). (17)

4.3.1 Pitch

Pp(pn|si) is one if the output pitch from state si equals pn
and zero otherwise. Only one pitch results from a state.

4.3.2 Expressiveness

We consider that expressiveness relates only to the string
number and the finger number. Because the string number
xSN and the finger number xFN are independent of each
other, Pe(en|si) is defined as follows:

Pe(en|si) =
P (en|xSN

i )P (en|xFN
i )

P (en)
. (18)

The distributions of P (en|xSN
i ) and P (en|xFN

i ) are shown
in Figure 3. Based on these distributions, we postulate that
the distribution of expressiveness is a log-normal distribu-
tion as follows:

P (en|xX
i ) ∼ fND(en;µX,xX

i
, σ2

X,xX

i

), (19)

where X is SN or FN, and fND is the probability density
function of the log-normal distribution as follows:

fND(x;µ, σ
2) =

1√
2πσ2x

exp

{

− (log x− µ)2

2σ2

}

.

(20)
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µ and σ2 are defined by using maximum likelihood esti-
mation as follows:

µX,k =
1

|EX,k|
∑

ei∈EX,k

log ei, (21)

σ2
X,k =

1

|EX,k|
∑

ei∈EX,k

(µX,k − log ei)
2, (22)

where EX,k = {en|xX
n = k}, and |EX,k| is the number of

elements in set EX,k.
P (en) depends only on output sequence o and does not

influence the resulting state sequence s. Therefore, we as-
sume that P (en) is an arbitrary positive fixed number, and
disregard this number in the calculations.

5. EXPERIMENTS

We evaluated the proposed method based on two factors:
the concordance rate between textbook fingering and esti-
mated fingering, and subjective evaluation by violin play-
ers.

5.1 Experiment 1: Concordance Rate with Textbook

We observed how the concordance rate changes when wl

changes.

5.1.1 Conditions

The training data comprised 17 musical pieces (4,852 notes)
from four textbooks for intermediate violin students. The
test data contained two datasets: The beginner test dataset
comprised 14 musical pieces (2,265 notes) from two text-
books for beginners. The intermediate test dataset com-
prised 14 musical pieces (5,086 notes) from four textbooks
for intermediates. The test data did not overlap with the
training data.

The concordance rate is the number of notes where the
estimated fingering patterns match the textbook fingering
pattern in both string number and finger number. We set
wl as 1.0 when training, and set wr as 4.0. wHP and wFI

were decided by using a grid search. The maximum con-
cordance rate combination was searched from 121 combi-
nations where each parameter was set to 0, 0.1, 0.2, ..., 1.0.
As a result, wHP = 0.6 and wFI = 0.1.

5.1.2 Results

Figure 4 shows the concordance rate of each test dataset.
In the beginner test dataset, the concordance rate is at max-
imum when wl = 0.2. In the intermediate test dataset, the
concordance rate is at maximum when wl = 1.5. Thus,
we conclude that wl corresponds to the skill level. In the
McNemar test between concordance rates of wl = 0.2 and
wl = 1.5, we observed differences at a significance level
of 5% in the beginner test dataset, but found no significant
differences in the intermediate test dataset.

In the beginner test dataset, good fingering patterns can
be estimated because the concordance rate is high, even
when the training data used is at the intermediate level.
Therefore, fingering can be estimated for a level that is dif-
ferent from the training data level by changing wl.

On the other hand, the concordance rate using the inter-
mediate test dataset was lower than that using the begin-
ner test dataset. Furthermore, no significant differences
were found between concordance rates of wl = 0.2 and
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Figure 4. Rate of concordance with textbook fingering
patterns

wl = 1.5. This is because the fingering decisions con-
sidered performance expression, which has a high degree
of freedom, thereby producing many optimum fingering
patterns. Estimated fingering patterns of wl = 0.2 and
wl = 1.5 using the intermediate test dataset are different
in 720 notes (about 14%), although without significant dif-
ferences in the concordance rate.

5.2 Experiment 2: Subjective Evaluation

We also verified whether wl reflects the skill levels of the
players.

5.2.1 Conditions

We performed a subjective evaluation experiment using the
results of Experiment 1. Fingering patterns from wl = 0.2,
wl = 1.5, and textbook in the first eight measures of each
musical piece were evaluated. The first 10 measures of the
musical score were shown to allow the subjects to evalu-
ate the sequence of fingering patterns. The subjects were
seven violin players (6–21 years of experience, average
15.0 years). The order of showing the musical piece and
three fingering patterns was random, and they were not told
which of the three fingering patterns the textbook pattern
was. The following questions were asked:

Ease of transition (A) Whether the note on the musical
score is played easily using the evaluated fingering
pattern without considering performance expression.
(difficult 1 – easy 5)

Expression (B) Whether performance expression using the
evaluated fingering pattern is suitable. (unsuitable 1
– suitable 5)

Naturalness (C) Whether it is possible for a person to play
the violin with the evaluated fingering pattern. (not
possible 1 – possible 5)

Skill level (D) The skill level that the evaluated fingering
pattern accords with. (low 1 – high 5)

5.2.2 Results

Figure 5 shows the average, standard deviation, and t-test
results obtained from the subjective evaluation. When we
compared ease of transition and expression, ease of tran-
sition was better in the beginner test dataset, whereas ex-
pression was greater in the intermediate test dataset. When
we compared wl = 0.2 and wl = 1.5, ease of transi-
tion was better with wl = 0.2, and expression was greater
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Figure 5. Average of the subjectivity evaluation (The error
bar represents the standard deviation and the asterisk (*)
represents the significance difference (p < 0.05) between
the two evaluations).

w = l 0.2

w = l 1.5

Figure 6. Examples of estimated fingering patterns (fin-
ger number and string) for wl = 0.2 and wl = 1.5 in the
intermediate test dataset

with wl = 1.5. In the example shown in Figure 6, al-
though the fingering pattern of wl = 0.2 uses open string,
the fingering pattern wl = 1.5 avoids using open string
when the note length is long; therefore, the fingering pat-
tern of wl = 1.5 accords with higher skill levels than that
of wl = 0.2. The answers obtained to the skill level ques-
tion also show the same relation between wl and skill level.
Thus, we verified that the assumption of relation between
skill level and priority of performance expression is cor-
rect and that differences in wl reflect the differences in skill
level.

Based on comparisons of our estimation and the textbook
patterns, in terms of ease and expression using beginner
test dataset, the evaluation of wl = 0.2 was equal to or
better than that of the textbook patterns. Therefore, our
proposed method can suitably estimate fingering for begin-
ners. On the other hand, in terms of expression and nature,
using the intermediate test dataset, the evaluation of our
estimation was worse than that of the textbook. The per-
formance expression depends on slur, volume, and other
factors; however, we consider only the note length in this
paper, thereby reducing the estimation accuracy for expres-
sion. The main reason for the low evaluation in the nature
question is that the same finger is continuously used, even
when the pitches are different. This problem can be solved
by introducing the relation between the pitch and the finger
in transition probability.

6. CONCLUSION

In this paper, we proposed an HMM-based estimation
method of violin fingering according to skill level. By
prioritizing performance expression from note length and
skill level, fingering patterns based on skill level can be

estimated using only one model.
We tested the proposed method in two experiments based

on its concordance with textbook fingering and based on
subjective evaluation by violin players. However, perfor-
mance expression, which depends on slur, volume, and
other factors, could not be sufficiently tested. Therefore,
we will consider these factors in future work.
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