
Programmation and Control of Faust Sound Processing in OpenMusic

Dimitri Bouche, Jean Bresson

STMS lab: IRCAM-CNRS-UPMC

1, place Igor Stravinsky, Paris F-75004

dimitri.bouche@ircam.fr

jean.bresson@ircam.fr

Stéphane Letz

Grame

11, cours de Verdun Gensoul, Lyon F-69002

letz@grame.fr

ABSTRACT

We introduce OM-Faust, an OpenMusic library including

objects and functions to write, compile and control Faust

programs. Faust is a domain-specific functional program-

ming language designed for DSP. The integration of Faust

in OpenMusic enables composers to program and compile

their own audio effects and synthesizers, controllable both

in real-time or deferred time contexts. This implemen-

tation suggests a more general discussion regarding the

relationship between real-time and off-line processing in

computer-aided composition.

1. INTRODUCTION

While the foundations of computer-aided composition en-

vironments initially focused on instrumental writing and

symbolic music processing (i.e. at the “score” level) [1], its

frontiers with the sound processing/synthesis realm have

regularly been challenged and expanded [2, 3, 4]. Techno-

logical developments combined with composers’ demand

for flexible and high-quality audio rendering leads to fur-

ther growth in this area of computer-aided composition

software.

Our current work takes place in the OpenMusic environ-

ment [5, 6]. OpenMusic (OM) is a visual programming

language allowing composers to design programs leading

to the creation or transformation of musical scores, sounds

or other kind of musical data. OM includes an audio en-

gine for sound rendering, but generally does not operate at

the level of sound signals. Instead, interfaces have been

developed with sound processing and synthesis systems,

such as Csound, SuperVP, Chant, Spat, etc. [7, 8, 9].

In this paper, we present a new interface developed be-

tween OM and the Faust real-time signal processing lan-

guage. Our objective is not to offer new audio processor

units in OM, but to provide a framework for composers

to build their own audio effects and synthesizers in this

language. The tight coupling between Faust and LibAu-

dioStream, the current audio rendering engine in OM, al-

lows it to achieve dynamic integration of the language in

the compositional environment, and enables both real-time

Copyright: c©2014 Dimitri Bouche et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

and off-line (“composed”) control of the effects and syn-

thesizers.

After a quick presentation of Faust and the OM audio ar-

chitecture, we will present the new OM objects and meth-

ods involved in this work, highlighting the distinction be-

tween the real-time and off-line approaches.

2. THE OM-FAUST CONNECTION

2.1 LibAudioStream as OM Audio Architecture

Since OM 5 [10], the audio architecture in OM is based on

the LibAudioStream library [11]. LibAudioStream (LAS)

provides a relatively high-level and multi-platform API for

multi-track mixing and rendering of audio resources.

Audio resources in OM (sound objects) are converted to

LAS streams, processed and combined together using an

algebra of stream composition operations 1 and eventually

loaded in one of the tracks of the LAS player for rendering.

This process can be monitored thanks to a standard multi-

track audio mixing console window.

The basic stream processing units of LAS are also avail-

able as functional units (boxes) to be used in OM visual

programs: users can connect them together to process, com-

bine and transform sounds algorithmically (see Figure 1).

Eventually, an offline rendering utility performs a “virtual

run” of the player and redirects the resulting stream to a

sound file, hence allowing it to generate new sounds from

the programmed audio processing chain [12].

2.2 The Faust Language

Faust (Functional AUdio STream) is a functional program-

ming language designed for real-time signal processing and

synthesis [13]. It targets high-performance signal process-

ing applications and audio plug-ins development for a va-

riety of platforms and standards.

This specification language aims at providing an adequate

functional notation to describe signal processors from a

mathematical point of view. Faust is, as much as possi-

ble, free from implementation details. Resulting programs

are fully compiled, not interpreted: the compiler translates

Faust programs into equivalent C++ programs taking care

to generate the most efficient code. The result can gener-

ally compete with, and sometimes even outperform, C++

code written by seasoned programmers [14]. The gener-

ated code works at the sample level; it is therefore suited

1 A stream is described as the result of combining others stream using
several operators like sequence, mix, cut, loop, transform...

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1598 -

mailto:dimitri.bouche@ircam.fr
mailto:jean.bresson@ircam.fr
mailto:letz@grame.fr
http://creativecommons.org/licenses/by/3.0/

Figure 1. Processing sounds in OpenMusic using the

LibAudioStream framework.

to implement low-level DSP functions, like recursive fil-

ters. The code is self-contained and does not depend of

any DSP library or runtime system. It has a very determi-

nistic behaviour and a constant memory footprint.

Faust allows users to program effects and synthesizers,

and to use them in the environment of their choice. A sig-

nificant number of libraries are available for import into

the programs. These libraries cover most of the basic audio

processing and synthesis functions (filters, reverbs, signal

generators, etc.). The programs can be compiled for spe-

cific target “architectures” (e.g. Max, PureData, VST...)

[15] and then provide corresponding entry points for con-

trol.

2.3 LAS-Faust Connection

The Faust compiler is generally used as a command line

tool to produce a C++ class starting from the DSP source

code. This class can be compiled later on with a regular

C++ compiler, and included in a standalone application or

plug-in. In the faust2 development branch, the Faust com-

piler has been packaged as an embeddable library called

libfaust, published with an associated API.

The complete chain therefore starts from the DSP source

code, compiled into the LLVM intermediate representation

(IR) 2 using the libfaust LLVM backend, to finally produce

the executable code using the LLVM Just In Time compiler

(JIT); all these steps being done in memory (see Figure 2)

[17]. This dynamic compilation chain has been embedded

in the LibAudioStream library, so that Faust effects or syn-

thesizers can be dynamically complied and inserted in the

LAS audio chain.

2 LLVM (formerly Low Level Virtual Machine) is a compiler infras-
tructure designed for compile-time, link-time, run-time optimization of
programs written in arbitrary programming languages [16].

Figure 2. Steps of the compilation chain in Faust.

Faust and the LibAudioStream library are therefore com-

patible at different levels :

• LAS can read and connect compiled Faust effects in

the audio processing chains (Faust signal processors

can be used to transform audio streams),

• LAS connects to the control parameters of the Faust

effects and provides an API to set or read their values

(Faust signal processors can be controlled in real-

time using LAS),

• LAS embeds the libfaust and LLVM technologies

and can compile Faust code on-the-fly from a text

buffer (Faust effects can be created and applied dy-

namically).

These cross-connections between Faust and LAS are the

basis of the high-level control interface proposed in OM-

Faust, which we will detail in the next sections.

3. FAUST OBJECTS

Two main objects have been developed in the OM-Faust

library: Faust-FX and Faust-Synth.

3.1 Effects: Faust-FX

Faust-FX is a standard OM object represented in the visual

programs as a “factory” box (see Figure 3). Its inputs al-

low to build an instance of the object upon evaluation: a

Faust program (edited or imported in a Textfile object, the

standard OM text editor), a name (optional) and a track

number (to plug the effect on a specific track of the audio

player – the assignation of an effect to a track can also be

done through the mixing table, see section 3.3).

Figure 3. The Faust-FX object and it’s input/initialization

values.

The evaluation of this box handles the different steps that

the architecture needs to compile and register the resulting

audio processing unit:

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1599 -

• Compilation of the code (incl. error management),

• Registering in a pool of available effects,

• Connection to the audio system (if track specified),

• Generation of control interfaces (see section 4).

The Faust compilation process also outputs a SVG file

containing a hierarchical block-diagram representation of

the signal processing unit, which can be visualized and ex-

plored in a web browser.

3.2 Synthesizers: Faust-Synth

At first sight, the Faust-Synth object is quite similar to

Faust-FX (see Figure 4), but it differs in its use and pur-

pose in the environment. The function of the synthesizer in

our system (producing sound) is different from the one of

an effect (transforming an existing sound or audio stream).

Effects, for instance, can be applied sequentially on top of

one another in a processing chain. Synthesizers at the con-

trary should be considered as a source (which can also be

processed by a chain of effects or treatments).

Figure 4. The Faust-Synth object and its in-

put/initialization values.

This distinction implies a number of differences in the

treatment of these two kinds of objects. It is possible for

instance to assign several Faust-FX to a same audio track,

but one single Faust-Synth will be accepted on a track.

Faust-Synth also has a duration as additional initializa-

tion parameter. Indeed, “off-line” processes such as the

ones taking place in computer-aided composition must gen-

erally produce time-bounded structures, and therefore in-

clude a notion of duration. 3 Being an individual sound-

ing object (and not a processing unit applied to an existing

one), Faust-Synth is likely to be played and integrated in

an audio mix or sequence (in an OM visual program, or in

a sequenced context such as the maquette [18]) along with

other sounds.

3.3 Connections to Audio Tracks in the Audio Mixer

The OM audio mixing table enables volume and panning

control for each audio player track. OM-Faust extends this

3 At this juncture lies one of the main paradigmatic divisions be-
tween computer-aided composition and real-time audio processing sys-
tems, which usually consider virtually infinite audio or data streams.

interface, providing post/dynamic controls for the the Faust

audio units’ assignments to the audio tracks and resources.

Figure 5 shows the Audio Mixer window with the OM-

Faust plug system extension. The SYNTH and FX selectors

complement the Faust objects initialization process, con-

necting compiled and registered instances of Faust-FX and

Faust-Synth with the LAS player tracks.

Figure 5. The Audio Mixer and its Faust extension.

4. SELF GENERATED INTERFACES :

REAL-TIME CONTROL OF FAUST OBJECTS

Figure 6. A Faust-FX object and its self-generated con-

trol interface (the “SVG” button opens the block-diagram

representation of the effect in a web browser).

Faust code can embed elements of control interface speci-

fication (sliders, check-boxes, knobs or other kinds of com-

ponents that will set the value of the effects or synthesiz-

ers’ parameters). The compiler interprets this specification

depending on the target architecture or can export it as a

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1600 -

Json file [19]. The initialization of a Faust-FX or Faust-

Synth in OM uses and parses this Json specification file to

build a hierarchical representation of the user interface cor-

responding to the effect or synthesizer controls, presented

to the user upon opening (double-clicking) the effect or

synthesizer’s box (see Figures 6 and 7).

Figure 7. A Faust-Synth object and its self-generated con-

trol interface.

These control interfaces are connected to the control pa-

rameters of the Faust processing unit via LAS, and work

in real-time depending on the connections of these units in

the global audio setup.

5. FAUST-AUTOMATION : A BRIDGE BETWEEN

OFF-LINE AND REAL-TIME CONTROL

One of the main interests in using a computer-aided com-

position environment like OM to perform sound process-

ing or synthesis, is the possibility to design complex pro-

cesses for the generation of DSP structures and controllers.

Faust-Automation is another object included in the OM-

Faust library, derived from the BPF object (break point

function), bringing the capability of programming or hand-

drawing curves that will serve as pre-generated controllers

(automations) for the Faust effects or synthesizers (see Fig-

ure 8). A Faust-Automation controls one specific named

parameter, and it is possible to use as many automations as

the number of parameters of the targeted Faust object.

Faust automations can be used both in real-time or off-

line sound processing contexts. In an off-line context (the

“usual” context for computer-aided composition), it will be

considered as a sequence of timed values for the different

Faust processing controllers (see Section 6). In a “real-

time” context (to control a Faust process currently running

on the sound player, e.g. attached to a playing audio track),

Figure 8. Faust-Automation object.

Faust automations are “played” as independent musical ob-

jects. A plug-in to the OM player system schedules Faust

control value changes via LAS at every timed-point in the

automation BPFs. They can also be integrated as compo-

nents in more complex musical structures, for instance in a

maquette (see Figure 9).

6. OFF-LINE APPROACH TO FAUST OBJECTS

We have seen in the previous sections how Faust objects

can be used through the OpenMusic audio architecture and

modify/build output streams in real-time.

They can also be used as off-line processing objects, and

enable more complex compositional approaches.

6.1 Sound processing : Apply-Faust-FX

LAS offers the possibility of connecting effects on a player

track, but also directly as a transformer on a sound stream.

The Apply-Faust-FX method simulates a sound file going

through a Faust-FX and produces a new sound file. A vir-

tual run of the sound+effect rendering is performed and

redirected to an output file.

Figure 10 shows an example of the off-line transforma-

tion of a sound by a Faust-FX via Apply-Faust-FX. The

effect parameters can be controlled using optional inputs

of Apply-Faust-FX, and specified either as constant values

or as a set of one or more Faust-Automation objects gath-

ered in a matrix structure. In the latter case, at each audio

buffer writing operation during the “virtual rendering”, a

new parameter value is read in the Faust-Automation and

set as control value. It is therefore possible to change an

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1601 -

Figure 9. Faust-Automations and other SOUND and OM-Faust objects in a maquette. Two automations control parameters

of an effect applied to sound files, and an other a parameter of Faust-Synth process. Automations are bounded and scalable

to specific intervals on the maquette time-line.

automation grain by setting the length of the buffers (in

Apply-Faust-FX, the default buffer length is set to 256 sam-

ples, which corresponds to 5.8 ms for a 44.1 kHz sample

rate). An optional gain control can also be specified to

Apply-Faust-FX, for instance to avoid clipping in ampli-

fied effects.

Figure 10. The Apply-Faust-FX method, used to process

a sound file, using a Flanger effect with two automated

parameters.

6.2 Synthesis rendering : Flatten-Faust-Synth

The Flatten-Faust-Synth method is similar to the Apply-

Faust-FX, applied to a Faust-Synth. Instead of using a

sound as input, it simply uses a duration setting to limit

the output length (see section 3.2).

With the same rendering utility as described in section

6.1, Flatten-Faust-Synth can be controlled with constant

or varying parameter values (using automations) it outputs

a sound file of the required duration to the disk. Figure

11 shows an OM patch where a sound file is synthesized

from a Faust program and a set of parameter values and

automations.

7. CONCLUSION

OM-Faust allows to write, compile and control Faust ob-

jects in OpenMusic. This functional DSP programming

framework offers users a low-level control of the audio

processors they build, coupled with dynamic real-time con-

trol interfaces and powerful offline rendering facilities.

While common music software mostly process audio sig-

nal in real-time, OM-Faust objects can be used both in real-

time and deferred-time in the same work session. These

objects can produce or transform musical material (audio

streams), and/or be considered as primary musical mate-

rial themselves. This duality introduces interesting issues

in the compositional environment, which we plan to ad-

dress in future works from the user point of view and with

the development of hybrid scheduling strategies for com-

putation and rendering.

OM-Faust is an open-source library and is distributed with

a set of tutorial patches. 4

4 http://forumnet.ircam.fr/product/openmusic-libraries/

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1602 -

Figure 11. The Flatten-Faust-Synth method, used to “syn-

thesize” a 15 seconds sound file from a Faust oscillator,

with a volume and a frequency automations.

Acknowledgments

This work has been realised with the support of the French

National Research Agency projects with reference ANR-

12-CORD-0009 and ANR-13-JS02-0004-01.

We thank Matthew Schumaker for his proofreading and

suggestions.

8. REFERENCES

[1] G. Assayag, “Computer Assisted Composition Today,”

in 1st symposium on music and computers, Corfu,

1998.

[2] J. Bresson and C. Agon, “Musical Representation of

Sound in Computer-aided Composition: A Visual Pro-

gramming Framework,” Journal of New Music Re-

search, vol. 36, no. 4, pp. 251–266, 2007.

[3] M. Laurson, V. Norilo, and M. Kuuskankare,

“PWGLSynth: A Visual Synthesis Language for Vir-

tual Instrument Design and Control,” vol. 29, no. 3,

2005.

[4] J. McCartney, “SuperCollider: A New Real Time

Synthesis Language,” in Proceedings of the Inter-

national Computer Music Conference, Hong Kong,

China, 1996.

[5] G. Assayag, C. Rueda, M. Laurson, C. Agon, and

O. Delerue, “Computer Assisted Composition at IR-

CAM: From PatchWork to OpenMusic,” vol. 23, no. 3,

1999.

[6] J. Bresson, C. Agon, and G. Assayag, “OpenMusic.

Visual Programming Environment for Music Compo-

sition, Analysis and Research,” in ACM MultiMedia

2011 (OpenSource Software Competition), Scottsdale,

AZ, USA, 2011.

[7] C. Agon, J. Bresson, and M. Stroppa, “OMChroma:

Compositional Control of Sound Synthesis,” Computer

Music Journal, vol. 35, no. 2, 2011.

[8] J. Bresson and M. Stroppa, “The Control of the Chant

Synthesizer in OpenMusic: Modelling Continuous As-

pects in Sound Synthesis,” in Proceedings of the Inter-

national Computer Music Conference, Huddersfield,

UK, 2011.

[9] J. Bresson and M. Schumacher, “Representation and

Interchange of Sound Spatialization Data for Compo-

sitional Applications,” in Proceedings of the Interna-

tional Computer Music Conference, Huddersfield, UK,

2011.

[10] J. Bresson, C. Agon, and G. Assayag, “OpenMusic

5: A Cross-Platform release of the Computer-Assisted

Composition Environment,” in Proceedings of the 10th

Brazilian Symposium on Computer Music, Belo Hori-

zonte, MG, Brasil, 2005.

[11] “Libaudiostream,” http://libaudiostream.sourceforge.net/,

[online] Retrieved Oct. 29, 2013.

[12] J. Bresson, “Sound Processing in OpenMusic,” in Pro-

ceedings of the International Conference on Digital

Audio Effects, Montreal, Canada, 2006.

[13] Y. Orlareya, D. Fober, and S. Letz, “Faust: An Effi-

cient Functional Approach to DSP Programming,” in

New Computational Paradigms for Computer Music,

G. Assayag and A. Gerzso, Eds. Delatour France /

Ircam, 2009.

[14] N. Scaringella, Y. Orlarey, D. Fober, and S. Letz, “Au-

tomatic Vectorization in Faust,” in Actes de Journées

d’Informatique Musicale, Montbéliard, France, 2003.

[15] D. Fober, Y. Orlarey, and S. Letz, “Faust Architectures

Design and OSC Support,” in Proceedings of the In-

ternational Conference on Digital Audio Effects, Paris,

France, 2011.

[16] C. Lattner, “LLVM : An Infrastructure for Multi-Stage

Optimization,” Master’s thesis, University of Illinois at

Urbana-Champaign, USA, 2002.

[17] A. Gräf, “Functional Signal Processing with Pure Data

and Faust using the LLVM Toolkit,” in Proceedings of

the Sound and Music Computing Conference, Padova,

Italy, 2011.

[18] J. Bresson and C. Agon, “Temporal Control over

Sound Synthesis Processes,” in Proceedings of Sound

and Music Computing Conference, Marseille, France,

2006.

[19] D. Crockford, “RFC 4627. The application/json Media

Type for JavaScript Object Notation (JSON),” The In-

ternet Society, Tech. Rep., 2006.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1603 -

