
Directed Transitional Composition for Gaming and Adaptive Music Using
Q-Learning

Jason Cullimore

Interdisciplinary Studies

University of Regina

jason@jasoncullimore.com

Howard Hamilton

Computer Science

University of Regina

hamilton@cs.uregina.ca

David Gerhard

Computer Science

University of Regina

gerhard@cs.uregina.ca

ABSTRACT

One challenge relating to the creation of adaptive music in-

volves generating transitions between musical ideas. This

paper proposes a solution to this problem based on a modi-

fication of the Q-Learning framework described by Reese,

Yampolskiy and Elmaghraby. The proposed solution rep-

resents chords as states in a domain and generates a tran-

sition between any two major or minor chords by find-

ing a pathway through the domain in a manner based on

a Q-Learning framework. To ensure that the transitional

chords conform to the tonalities defined by the start and

goal chords, only chords that contain notes that are found

in combined pentatonic scales built from the start and goal

chords are included within the domain. This restriction in-

creases the speed of pathfinding and improves the confor-

mation of the transitions to desirable tonal spaces (in par-

ticular the keys most closely related to the start and goal

chords). This framework represents an improvement over

previous music generation systems in that it supports tran-

sitions from any point in a musical cue to any point in an-

other, and these transitions can be rendered in real time. A

general method for implementing this solution in a video

game is also discussed.

1. INTRODUCTION

Reese, Yampolskiy and Elmaghraby [1] present a frame-

work whereby a Q-Learning model can be applied within

a process that generates sequences of musical chords. We

propose to modify their framework to generate musical

sequences that express major and minor tonalities more

strongly, with the goal being the creation of transitional

chord sequences linking any two major or minor chords.

We will also discuss ways to increase the computational

efficiency of sequence generation as well as the aesthetic

quality of generated chord sequences through modifying

Reese et al.’s model to restrict the range of chord types

available to the generative process.

Development of such a system would be of great use to

both composers and the video game developers who em-

ploy them. As video games become more complex, some-

times reaching play times of over 100 hours, they require

Copyright: c©2014 Jason Cullimore et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

more varied musical scores to keep the experience fresh

and engaging for the player. Meeting this challenge can

require a great deal of composing, both of musical cues

and of transitional material to link these cues. For exam-

ple, the component of the interactive score to Grand Theft

Auto V produced by Edgar Freose 1 featured over 67 hours

of music, including cues, transitions and alternate audio

mixdowns [2]. This estimate excludes the total length of

the commercial pop songs heard on the in-game radio.

Because of the large number of cues that are incorporated

into a modern video game, flexible methods of smoothly

transitioning between highly differing cues have become a

significant area of technical development in the video game

industry. There have been many solutions proposed for

this problem. One early example is found in LucasArts’

iMUSE interactive music system [3]. With iMUSE, the

composer “... must map out and anticipate all possible

interactions between sequences at any marker point, and

compose compatible transitions ... an incredibly time con-

suming process.” Marker points are places in a cue where

the composer dictates that a change in the music may oc-

cur, such as a transition to another theme, an end to the

music, or a continuation of previous musical material. The

larger the game (and associated soundtrack), the greater

the number of possible transitions and the more complex

the task facing the composer, who is responsible for com-

posing both the cues and transitions, while at the same time

implementing an event-based decision tree that reflects all

possible sequences in which the musical score may unfold.

Another approach was used in the game Anarchy Online,

which featured a series of about 750 musical fragments

called “sequences”[3]. These sequences could be layered

and sequentially arranged into a continuous musical sound-

track. Groups of sequences expressing particular moods

were associated with specific locations in the game world,

giving each environment its own musical character. While

this approach allows a score to change dynamically in a

manner that can sustain many hours of playtime, the score

is still limited in that it cannot autonomously generate new

musical material that falls outside of the structures present

within the precomposed sequences. Also, a composer us-

ing such a system is limited with regards to the size and

scope of the themes that they create; musical themes that

require development over many measures of music may

be less compatible with a compositional approach that em-

1 GTA5 is a video game that incorporates racing and role-playing ele-
ments released by Rockstar Games in 2013

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 332 -

mailto:jason@jasoncullimore.com
mailto:hamilton@cs.uregina.ca
mailto:gerhard@cs.uregina.ca
http://creativecommons.org/licenses/by/3.0/

phasizes short, interconnecting musical ideas.

The system we propose in this paper avoids such pre-

composed elements within transitional material. Instead,

we adapt Reese et al.’s Q-Learning framework to gener-

ate transitions between cues automatically and at any point

within the cues. The system also generates transitions that

inhabit the same tonal space as the chords which form the

start and end point of the transition. Such a system would

be of great use to a composer of nonlinear, adaptive mu-

sic, whether in video game scoring applications or the cre-

ation of more aesthetically focussed artworks, since it al-

lows for the efficient and interactive generation of transi-

tional material. Dynamically generated transitional music

that is capable of reacting to changing elements within a

game state (e.g. player actions, shifts in environmental at-

tributes, and changes in the desired emotional state for the

player at a given point in the gameplay) can be guided both

by the composer during the game’s development and by the

game engine dynamically at run time. As a result, dynamic

musical transitions can increase the flexibility with which

the game engine can instantiate musical cues, since, the-

oretically, such a system would be able to transition from

any cue (expressing one emotion) to any other cue (po-

tentially evoking a highly contrasting emotion). The com-

poser could then focus on writing expressive cues, know-

ing that these cues can be smoothly transitioned between in

a manner that allows the music to closely follow the action

in the game.

The remainder of this paper is organized as follows. First,

A machine-learning algorithm known as Q-Learning will

be presented. Next, a specific application of Q-Learning to

chord generation will be discussed, and finally, a set of im-

provements and modifications will be proposed to the ex-

isting Q-Learning chord sequence generation method de-

signed to allow it to operate in real time and generate ap-

propriate, interesting, non-repeating transitional sequences

starting at any chord in the original musical sequence.

2. Q-LEARNING

The Q-Learning model was first developed by Watkins [4]

and refined by Watkins and Dayan [5]. Poole and Mack-

worth [6] present a useful description of the model.

In this model there is a domain which can be configured

with different attributes at different times. Each configura-

tion of the domain constitutes a state, which is a member of

the total set of states that the domain can embody. At any

given time, an agent is located at one of these states, and

may traverse from one state to another within the domain

by executing an action. Allowable actions for any given

state are defined by a set of rules that are devised by the

programmer. Figure 1 shows an example 2 of a simple six-

state domain. The agent begins in state S0 (the start state)

and is tasked with finding the optimal route from S0 to S5

(the goal state). The allowable actions from each state have

been defined by the designer and are shown by the arrows

in the figure.

2 Figure 1 and the associated example are adapted from
www.acm.uiuc.edu/sigart/docs/QLearning.pdf

S0 Start S1 S2

S3 S4 S5 Goal

Figure 1. A hypothetical domain consisting of six states

Each action that the agent can take from a particular state

can be represented as a pairing of a state and an action. It is

possible to represent all pairs of state and action on a two

dimensional matrix with the rows representing the origin

states and the columns representing actions taken from an

origin state that each lead to a specific, unique destination

state. There are two such matrices used in the Q-Learning

process:

• The reward matrix (R) contains fixed values that indi-

cate the desirability of an action taken from a given state;

• The Q matrix records the cumulative reward values gen-

erated as the agent traverses the domain. These values

are updated every time the agent executes a particular

action from a particular state.

Table 1 shows a reward matrix and Table 2 shows a Q ma-

trix for the domain in Fig. 1. Note that each state in both

matrices is associated with several possible actions (based

on a rule set defined by the programmer). In the case of

the reward matrix, the empty cells indicate that the corre-

sponding action is not permissible (i.e. there is no arrow

that connects the two relevant states). All permissible ac-

tions have a reward value of zero, except the two transitions

to the goal state, which each earn a reward of 100. In the

Q matrix, all values may initially be zero, indicating that

no learning has yet occurred. These values will become

nonzero as the agent repeatedly moves through the domain

and is rewarded (note that the initial Q matrix could also

be populated with random values). As in the case of the

reward matrix, non-allowed actions are excluded from the

Q matrix in Table 2.

R A0 A1 A2 A3 A4 A5

S0 0 0

S1 0 0 0

S2 0 100

S3 0 0

S4 0 0 100

S5 0 0

Table 1. A reward matrix for the domain in Fig. 1.

In the Q-Learning model, the agent begins in the start

state (in this case state S0) and traverses the domain by

executing allowable actions for whatever state the agent

currently occupies. Each action within the domain is an

event which results in an update to the value of Q(s, a),
based upon the current reward value listed in the reward

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 333 -

http://www.acm.uiuc.edu/sigart/docs/QLearning.pdf

Q A0 A1 A2 A3 A4 A5

S0 0 0

S1 0 0 0

S2 0 0

S3 0 0

S4 0 0 0

S5 0 0

Table 2. An initial Q matrix for the domain in Fig. 1

table, plus an additional value proportional to the Q matrix

value of the most desirable future action available from

the destination state. These values serve to differentially

reward pathways based upon the desirability of particular

state/action combinations. When an agent executes an ac-

tion, the corresponding Q matrix value is updated. Higher

values reinforce use of an action and lower values reduce

its desirability.

In our example, the result of these repeated updates to

the values in the Q matrix is that the rewards associated

with actions that lead into the goal state are propagated

back through the Q matrix. As such, state/action pairs that

lead into the goal state also develop higher Q values, and

state/action pairs that lead to states with higher Q values

also themselves develop increased Q values. Ultimately,

a path of relatively high Q values forms between the start

state and the goal state. This path can be iteratively rein-

forced until the algorithm approaches convergence.

Entries in the Q matrix are updated using the following

process: Given an action a from a state s with a reward

R(a, s), causing a change to state s′ with available actions

a′, the new value for the Q(s, a) is calculated according to

the formula [1]:

Q(s, a)← (1−α)Q(s, a)+α
(

R(s, a) + γmax
a′

Q(s′, a′)
)

(1)

where (0 < α ≤ 1) represents the learning rate (the degree

to which new information overrides the current Q(s, a)
value), and (0 ≤ γ < 1) is the the discount factor, (the

degree to which the agent values future rewards).

For each cycle of the Q-Learning algorithm, the agent:

1. Identifies the actions available in the current state;

2. Selects one at random to execute;

3. Calculates the total reward for executing this action

(as in Eq. 1); and

4. Updates the Q(s, a) value for the original state and

action taken.

The agent then executes this algorithm again with the des-

tination state as the new starting point, continuing in this

manner until the agent reaches the terminal state, complet-

ing a learning episode. Further episodes are executed and

the Q matrix is iteratively updated until the matrix con-

verges upon an optimal solution for traversing the states

in the domain, known as an optimal policy. As this hap-

pens, each state/action pair will then approach an optimal

Q value Q∗(s, a). Full convergence theoretically requires

an infinite number of episodes, but an approximation of

Q∗(s, a) can be achieved for a given domain by iterating a

large enough number of episodes. The number of episodes

required for convergence varies significantly from domain

to domain, based largely on its size and the nature of the

connections between states.

3. Q-LEARNING AND CHORD SEQUENCE

GENERATION

In order to generate chord sequences, Reese et al. apply

the Q-Learning model to an n-dimensional domain com-

posed of a number of states, each of which represents a

distinct chord of n pitches from the chromatic (12-note)

musical scale 3 . Each state in the domain is equivalent to

one chord. The space is toroidal, in that motion in a given

direction loops the pitch classes in a manner similar to the

circle of fifths (Krumhansl [7] provides a helpful descrip-

tion of chord relations), and chords representing all possi-

ble combinations of n pitch classes may be situated in the

n-dimensional space.

An example of a two-dimensional representation of a do-

main containing all possible two-note interval combina-

tions is provided by Tymoczko [8] and reproduced in Fig. 2.

Motion along the horizontal axis reflects transposition and

movement in the vertical axis increases or decreases the

interval size. Reese et al. define each chord in the grid

produced by Tymoczko as a state, and an agent, starting

at one of the chords, can create sequences of chords by

performing actions (i.e. moving from state to state). Thus

the agent’s traversal of this domain can be represented as

a sequence of two-note musical harmonies. In Fig. 2, ar-

rows indicate one possible pathway through the domain;

the chord sequence thus generated is notated in Fig. 3.

Figure 3. A chord sequence resulting from the harmonic

domain traversal shown in Fig. 2

Reese et al.’s Q-learning implementation for chord tran-

sition composition defines an action as a vector vij repre-

senting the direction and speed of the agent as it moves

from one chord state to another chord state. This vec-

tor is a representation of the combined motion P (vij) =
P (vi)P (vj) of each note in the chord in the pitch space,

where vi describes the direction, and vj the amount, of

movement for each note in a chord transition. If a start po-

sition and end position are then defined for the agent in the

domain, and the system is allowed to iterate, the result is a

tonal chord transition from one state to another. Reese et

3 Although this discussion assumes 12-tone equal tempered pitch
classes, this technique could easily be extended to microtonal domains

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 334 -

C C C# C# D D D# D# E E F F F# F#

C C# C# D D D# D# E E F F F#

B C# C D C# D# D E D# F E F# F G

B D C D# C# E D F D# F# E G

A# D B D# C E C# F D F# D# G E G#

A# D# B E C F C# F# D G D# G#

A D# A# E B F C F# C# G D G# D# A

A E A# F B F# C G C# G# D A

G# E A F A# F# B G C G# C# A D A#

G# F A F# A# G B G# C A C# A#

G F G# F# A G A# G# B A C A# C# B

G F# G# G A G# A# A B A# C B

F# F# G G G# G# A A A# A# B B C C

Figure 2. A 2-dimensional harmonic domain (after [1]) showing a path traversal that could be used to generate the sequence

in Fig 3.

al. indicate (and admit) that although pathways thus estab-

lished represent a sequence of chords, they do not neces-

sarily lead to a musically pleasing result. Biasing of the re-

ward matrix is required, and Reese et al. performed this bi-

asing using subjective, hand-tuned, trial-and-error reward

values.

Reese et al.’s Q-learning implementation can generate se-

quences of chords that transition between any two user-

defined chords, and their output (sequences of chords with

defined beginning and end chords) demonstrates a tendency

to include chords that express a particular tonality. For ex-

ample, in one generated chord sequence, they observe the

consistent appearance of the pitch C in the tenor voice of

chord series (where n=4) that begins on a C-Major chord,

showing evidence that their system chooses chords based

in part on their conformance with a desired tonal centre.

The disadvantages of their approach can include excessive

chromaticism (use of non-scale notes) in generated chord

sequences that reduce the subjective impression of a partic-

ular tonality (major or minor), and the relative reduction of

efficiency of their algorithm resulting from the wide range

of states and transitionary actions that must be accounted

for within their domains.

4. NEW APPROACHES TO REAL-TIME

SEQUENCE GENERATION

This paper proposes three specific improvements to Reese et

al.’s model of Q-learning for chord sequence generation:

1. To increase the efficiency of the Q-Learning process by

reducing the number of chord states in a domain;

2. To generate more aesthetically pleasing chord sequences

by selectively excluding chord states that diverge from

the tonal space defined by the start chord or goal chord

within a domain;

3. To initiate generation of transitional chord sequences

prior to approaching convergence, creating greater vari-

ation in generated chord sequences while retaining their

tendency to conform with desired tonal qualities.

The intent of developing the system presented in this pa-

per is to refine Reese et al.s model by reducing the range of

the chord space, allowing the elimination of chord choices

that depart too extremely from the tonality defined by the

start and goal chords. When a composer creates music,

they are generally aware that certain pitches and intervals

are more common and useful in a given key than others,

particularly when attempting to achieve specific aesthetic

goals. Despite biasing the reward matrix with values that

strongly promote major (and to a lesser degree, minor)

chords, Reese et al.’s generated chord sequences still can

exhibit a high degree of chromaticism, since all possible

chords may be represented as states in their implementa-

tion of the framework. A composer writing in a tradi-

tional idiom such as classical or traditionally-influenced

cinematic film music knows that there are certain chords

that are much less commonly seen in a particular style of

music (generally producing aesthetically unsatisfying or

unpredictable results) and can be ignored for reasons of

practicality in many circumstances.

For the interested reader, audio/MIDI samples can be made

available that demonstrate the results of the experiments as

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 335 -

described below. To obtain these samples, please email the

authors directly.

4.1 Restricting chord states

One of the intents of the system we present is that it be

able to generate novel chord sequences in real time. Be-

cause of the computationally heavy nature of the system

involved, one technique for reducing the time of execution

is to reduce the number of possible states, making learning

and traversing the Q-matrix quicker. One may suggest that

this adds similar constraints to the diversity of chord se-

quences possible in the system, similar to the result of the

hand-tuning of rewards that Reese et al. use, however, the

restriction in the number of states in no way restricts the

order of traversal of the states, and the chord state restric-

tions can be seen as an enabling constraint, allowing new

interesting sequences to emerge from what may be seen

as relatively simple domains. Further, the restrictions that

follow allow us to develop a simplified system that proves

the concepts herein. Similar simplifications to the domain

could be made with any characteristics of the chords or se-

quences thus generated.

We propose to restrict the domain of included chords by

first assuming that the start and goal chords are either ma-

jor or minor (chords which are common in the tonal music

of film and video games). Since both major and minor

chords comprise a subset of the notes within the five-note

pentatonic scale (for example, the C-Major chord, with

notes C-E-G, represents a subset of the C-Major penta-

tonic scale, C-D-E-G-A), it is possible to restrict the do-

main of chord states in which Q-Learning will occur to

include only chords that may be built from the pentatonic

scales of the start chord, the goal chord, or a combination

of the two. An example of such a domain (based on C-

Major) is shown in Fig. 4, which shows a complete domain

for chords of n=2 (i.e. two-note intervals) with excluded

chords greyed out.

Since this domain is significantly smaller than the full

domain, it can be expected that the agent will, during an

episode, generally take fewer steps to reach the goal state.

The agent’s pathway is randomly directed and the number

of choices of action that the agent may have at any given

state is reduced, meaning that each step through the do-

main is more likely to reach the goal state.

A domain based upon the pentatonic scales of the start

chord and goal chord is constructed as in Fig 4. Any chord

states within this domain consist entirely of pitches that are

found in the pentatonic scales based on the start and goal

chords. Any chord states that contain pitches not found

in either of the two pentatonic scales are excluded. If the

start and goal chords are the same, then all chords in the

domain will be built exclusively from the five pitches in

the pentatonic scale based on that chord. If the pentatonic

scales do not overlap at all, then the domain will feature

chord states that consist of a set of ten pitches.

Pentatonic scales are used this way because they contain

within them a large number of consonant intervals, includ-

ing perfect fourths, perfect fifths and major thirds. They

also exclude several dissonant intervals such as the tritone

and minor second. Thus music built out of the notes of

a pentatonic scale tends to take on a pleasingly consonant

aspect (as the domain of video game music would typi-

cally require), and it is intended that the chord transitions

generated by this system embody this consonant quality.

Similarly, if the compositional domain required dissonant

sequences instead of consonant sequences, a set of inter-

vals could be selected to allow these sequences to appear.

4.2 Biasing the reward matrix

Given an appropriate choice of reward structure, the pas-

sage can embody a variety of different stylistic and aes-

thetic aims. Reese et al. utilize a reward matrix with a sin-

gle dimension R(s), in which each destination chord state

is associated with a particular reward as described above.

In the modified system proposed here, the reward matrix is

two dimensional, with the reward for an action being based

both on the qualities of the destination chord and its rela-

tionship with the origin chord from which the individual

action was taken. Using this system, it is possible to en-

courage motion within a pentatonic tonality by providing

larger rewards for actions that remain within a pentatonic

tonality.

R A1 A2 A3 A4 A5

C–D C–E♭ C–G E♭–F A–B♭

S1 C–D −50 +200 −50 −50
S2 C–E♭ −50 +200 +100 −50
S2 C–G +100 +100 +100 −50
S4 E♭–F −50 +100 +200 −50
S5 A–B♭ −50 −50 +50 −50

Table 4. A subset of the reward matrix representing biases

calculated based on the given rules.

Table 4 provides a subset of a reward matrix for a transi-

tion from a C-Major chord state to an E♭-Major chord state.

The reward matrix punishes actions that involve motion be-

tween C-Major and E♭-Major (e.g. motion from E♭-F to

C-D is punished with a value of -50) and rewards (conso-

nant) motion within a pentatonic scale (e.g. E♭-F to C-E♭if
rewarded with +100). Between these two scales there is

also an interval that is contained within both scales, that

being C-G. Because this interval is found in both scales,

it can act as a “pivot” point, allowing for transitions be-

tween the C-Major tonality and the E♭-Major tonality. Any

state/action pair that results in the agent reaching this pivot

state is generously rewarded, as can be seen in Table 4.

The goal chord may also be heavily biased against (with

a very low reward value), to ensure that motion in chord

space avoids this chord. The goal chord may be added

to the end of the generated transitional sequence manually

after the sequence is generated, and biasing against its ap-

pearance in the transitional sequence helps to ensure that

the chord states represented in the transition are not repet-

itive or harmonically redundant. To create the sense of a

cadence leading from a generated chord transition to the

goal chord, the dominant chord in the key of the goal chord

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 336 -

C–C C#–C# D–D D#–D# E–E F–F F#–F#

C–C# C#–D D–D# D#–E E–F F–F#

B–C# C–D C#–D# D–E D#–F E–F# F–G

B–D C–D# C#–E D–F D#–F# E–G

A#–D B–D# C–E C#–F D–F# D#–G E–G#

A#–D# B–E C–F C#–F# D–G D#–G#

A–D# A#–E B–F C–F# C#–G D–G# D#–A

A–E A#–F B–F# C–G C#–G# D–A

G#–E A–F A#–F# B–G C–G# C#–A D–A#

G#–F A–F# A#–G B–G# C–A C#–A#

G–F G#–F# A–G A#–G# B–A C–A# C#–B

G–F# G#–G A–G# A#–A B–A# C–B

F#–F# G–G G#– A–A A#–A# B–B C–C

Figure 4. An example of a pentatonic chord space built on the pentatonic scale with root “C”. Chords that contain pitches

not included within this pentatonic scale are greyed out, and would not be included among the states of a domain built upon

a C-Major chord.

All Pitches C C♯ D E♭ E F F♯ G A♭ A B♭ B

A-minor C D E G A

E♭-Major C E♭ F G B♭
Exclude C♯ F♯ A♭ B

Table 3. Exclusion of pitches based upon the start and goal chords. Only chords built entirely from pitches that are

represented within the pentatonic scales built from A-minor and E♭-Major are permissible in the domain.

may be inserted immediately before it in the sequence. Be-

cause the dominant chord is highly compatible with the

tonal space inhabited by the goal chord, its insertion into

a sequence as the penultimate chord generally creates a

heightened sense that the sequence is approaching the goal

chord in a manner consistent with norms of tonal music.

4.3 Variability in generated sequences

If enough episodes are undertaken, a Q Matrix will ap-

proach convergence, wherein an optimal path may be iden-

tified linking the start state and goal state. In the context

of dynamic music, however, it is often advantageous to in-

clude some uncertainty in the structure of a chord transi-

tion. The video game player might hear a transition be-

tween two themes dozens of times, depending on the game

and user behaviour, and any randomness in the structure

of the transition will help the music to remain fresh and

unpredictable. However, it is also desirable for generated

chord transition sequences to conform to the tonal norms

as already described.

The counterintuitive solution that we propose here is to

run the algorithm for only a small number of episodes,

such that we deliberately avoid convergence. Since Q ma-

trix values are updated based on the random motions of an

agent through the chordal domain, lower numbers of itera-

tions will result in Q matrices that are more heavily biased

in areas that happened to be more frequently travelled by

the agent. The less the agent has travelled through the do-

main, the more the different regions of the domain will be

differentially biased based on the agent’s random choices

of states to enter. The number of iterations that the agent

undertakes becomes a variable that is proportional to the

amount of variation exhibited in generated transitions.

4.4 Applications in the context of a video game

To apply the system described here to creating transitional

material in a video game, it is necessary for the composer

of the video game score to provide a representation of the

harmonic map of each cue in a video game. For example,

suppose the player is exploring a beautiful environment ac-

companied by a pastoral musical theme “P”, written in C-

Major. At some point, the game spawns a monster, neces-

sitating the transition to the energetic melee theme “M”,

written in E♭-Major. In systems like iMUSE, which in-

volve precomposed music, the transition would have to oc-

cur at some marker point in theme P, and theme P would

likely have to remain in a more restricted tonal space, never

moving too far away from C-Major, if the precomposed

transition were to function properly at a variety of differ-

ent marker points within theme P.

Since the Q-Learning system described here is capable of

transitioning from any chord to any other chord, it is pos-

sible for transitions to occur from any point in theme P, so

long as the chord in theme P which begins the transition

is known. There is no need for special code to determine

this map of chord changes in theme P, since the composer

can enter this information manually. A generative transi-

tion system such as this can thus support transitions from

any point in a theme for which the chord is known, and

the cue can range widely through tonal space, since it is

not necessary to support transitions that begin in a limited

range of chords.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 337 -

C-Maj F-Maj G-Maj A-min

D-min E-min A♭-Maj B♭-Maj

Table 5. A possible harmonic map of a generic theme.

The theme in Table 5 consists of eight measures each of

which express a particular chord as labelled. If theme M

is known to begin with the chord E♭-Major, then creating

a transition is simply a case of determining which point

in theme P the transition will begin from (taken from the

map in Table 5) and generating a transition to E♭-Major as

described above.

5. CONCLUSIONS

The system proposed here has several advantages over ear-

lier systems:

• Transitions may be generated from any chord to any

other chord, meaning that composers are free to range as

far as they want in tonal space. Previous systems have

restricted the composer to a narrow harmonic area in a

single cue.

• There is an inherent randomness in the generated chords,

but these chords still conform to a desired tonal space.

This quality helps to reduce the risk of repeated transi-

tions becoming stale and predictable, an advantageous

quality in a game where specific transitions may appear

hundreds of times during a single play-through.

• The reduction in the size of the domain (through exclud-

ing undesirable chord states entirely) serves to reduce

the computational complexity of the system, increasing

its speed and potentially allowing it to be implemented

in real time during execution of the game code.

• Biasing the reward table affects the tonal qualities of

generated transitions, leading to the possibility of using

the reward table as an expressive tool. It is possible,

for example, to promote transitions that focus on minor

chords by increasing the reward for them in the reward

matrix.

• By converting the reward matrix from one dimension to

two dimensions, it is possible to base the reward for an

action not just on the quality of the destination chord

(e.g. whether it is major or minor), but on the qualities

of the relationship between the current chord state and

the destination chord.

Through implementation of this system, it is theoretically

possible for composers of adaptive music (such as that of

video games) to focus their efforts on composing cues,

rather than concerning themselves with composing the po-

tentially large number of required transitions between cues

as well. They would be free to write more challenging

music since they would not be restricted to confining each

music cue to a narrow range of keys; rather, their compo-

sitions might move around the circle of fifths quite freely.

With creative manipulation of the reward table and choice

of the number of episodes to iterate before generating a

chord sequence, the composer can create desirable vari-

ability in their generated chord transitions while still main-

taining conformance with the tonalities of the start and goal

chords. As such, this application of the Q-Learning frame-

work serves both as a creative tool and an efficient means

of refocussing the adaptive music composer’s efforts on

thematic material.

6. REFERENCES

[1] K. Reese, R. Yampolskiy, and A. Elmaghraby, “A

framework for interactive generation of music for

games,” Proceedings of CGAMES’2013 USA, vol. 0,

pp. 131–137, 2012.

[2] J. Hatchman. (2013, November) Know the

score: The music of grand theft auto v. [On-

line]. Available: http://www.clashmusic.com/features/

know-the-score-the-music-of-grand-theft-auto-v

[3] K. Collins, Game Sound: an introduction to the history,

theory, and practice of video game music and sound

design. Mit Press, 2008.

[4] C. J. C. H. Watkins, “Learning from delayed rewards.”

Ph.D. dissertation, University of Cambridge, 1989.

[5] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Ma-

chine learning, vol. 8, no. 3-4, pp. 279–292, 1992.

[6] D. L. Poole and A. K. Mackworth, Artificial Intelli-

gence: foundations of computational agents. Cam-

bridge University Press, 2010.

[7] C. L. Krumhansl, “The geometry of musical structure:

A brief introduction and history,” Comput. Entertain.,

vol. 3, no. 4, pp. 1–14, Oct. 2005.

[8] D. Tymoczko, “The geometry of musical chords,” Sci-

ence, vol. 313, no. 5783, pp. 72–74, 2006.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 338 -

http://www.clashmusic.com/features/know-the-score-the- music-of-grand-theft-auto-v
http://www.clashmusic.com/features/know-the-score-the- music-of-grand-theft-auto-v

