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ABSTRACT

During the last decades, several methodologies have been

proposed for the harmonization of a given melody with al-

gorithmic means. Among the most successful are method-

ologies that incorporate probabilistic mechanisms and sta-

tistical learning, since they have the ability to generate har-

monies that statistically adhere to the harmonic character-

istics of the idiom that the training pieces belong to. The

current paper discusses the utilization of a well–studied

probabilistic methodology, the hidden Markov model (HMM),

in combination with additional constraints that incorporate

intermediate fixed–chord constraints. This work is moti-

vated by the fact that some parts of a phrase (like the ca-

dence) or a piece (e.g. points of modulation, peaks of ten-

sion, intermediate cadences etc.) are characteristic about

the phrase’s or piece’s idiomatic identity. The presented

methodology allows to define and isolate such important

parts/functions and include them as constraints in a proba-

bilistic harmonization methodology. To this end, the con-

strained HMM (CHMM) is developed, harnessed with the

novel general chord type (GCT) representation, while the

study focuses on examples that highlight the diversity that

constraints introduce in harmonizations.

1. INTRODUCTION

Automated melodic harmonization discusses the assign-

ment of harmonic material on the notes of a given melody.

The harmonic material is described by chord symbols, while

the harmonization is completed if voice leading between

the notes of successive chords, is defined. The common

approach to test an automatic harmonization system is to

utilize it for harmonizing melodies that pertain to a mu-

sical idiom with harmonic structure that is well-defined.

To this end, some pioneering methodologies that were de-

veloped for melodic harmonization, incorporated human

expert knowledge encoded in the form of rules, leading to

expert systems [1] that could generate harmonizations with

explicit stylistic orientation towards the musical idiom that

these rules referred to. For a review in the rule–based sys-

tems the reader is referred to [2]. A similar approach to the

rule–based methodologies is the one followed by systems
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that utilize genetic algorithms (GA), like the ones shortly

reviewed in the recent paper [3] and, also, in [4]. The sim-

ilarity between these two approaches is that both rely on

a set of harmonic rules intended for a specific musical id-

iom; in the case of the GAs, the employed fitness function

quantifies such rules.

However, the rule–based spectrum of methods has a ma-

jor drawback when discussing melodic harmonization in

many different idioms: the encoding of rules that describe

an idiom is not always a realizable task, since idioms abound

in complex and often contradicting interrelations between

harmonic elements. To this end, the formulation of proba-

bilistic techniques and statistical learning has been pro-

posed. Among many proposed methodologies, most of

which are discussed in Section 2, Bayesian networks [5]

and prediction by partial matching [6] have been utilized

to construct the bass, tenor and alto voices below a given

soprano voice, hidden Markov models (HMMs) for con-

structing chord sequences for a given melody [7] and prob-

abilistic graphical models for relative tasks [8].

The approach to harmonization that is pursued in this pa-

per, pertains to the wider research context of the COIN-

VENT project, according to which the study of automatic

melodic harmonization includes the blending of harmonic

concepts among diverse musical idioms, to produce novel

harmonic concepts. To this end, the exploration of harmon-

ically meaningful chords within musical phrases are con-

sidered as distinctively important parts of an idiom. Such

parts will be subsequently used as independent blend-able

entities, allowing the mechanism of conceptual blending to

produce harmonic “checkpoints” that comprise harmonic

characteristic from multiple harmonic idioms. An example

of structurally important parts are the chords in cadences,

as discussed in the literature review presented in Section 2.

However, the presented approach generalizes the notion of

“important” chords to a methodology that allows the inser-

tion of fixed–chord constraints in predefined positions of a

phrase.

In this context, the potential of utilizing a well–studied

probabilistic technique, namely the hidden Markov model

(HMM), is promising, since this technique has yielded out-

standing results in capturing the stylistic orientation of the

idiom that is composed by the training pieces. The paper at

hand proposes to tackle melodic harmonization through a

mixture of methodologies: HMM with fixed–constrained,

“deterministic” intermediate chords. The proposed method-

ology is utilized to produce probabilistic melodic harmo-

nizations that adhere to several fixed–chord constraints in

intermediate checkpoints of the melody, as discussed in [9].
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Harmonization with fixed checkpoints is considered a cru-

cial component of the presented work, since it enables the

prior definition of important chords in intermediate posi-

tions of the melody to be harmonized. The intermediate

or “anchor” chords of a phrase are considered to be given

either from an algorithmic process in a hierarchical level

above the “chord progression” level – where chord transi-

tions are defined by the proposed HMM variation – or by a

human user. However, it is beyond the scope of this paper

to discuss potential algorithms for intermediate chord se-

lection. Therefore, the experimental results mainly encom-

pass examples where the fixed–chord constraints are pro-

vided either by a human expert, or by the chords utilized in

the genuine composition of the harmonized melody (from

phrases that were not included in the training set). The

proposed methodology applies to full reductions of har-

monic material, therefore, a phrase is considered to in-

clude only the chords and melody notes that encompass

harmonic meaning.

An additional fundamental concern of the proposed har-

monization approach is the idiom–independency in the chord

symbols, chord relations and melodic considerations. This

concern is addressed by utilizing the general chord type

(GCT) representation, which is briefly discussed in Sec-

tion 3.2. The proposed algorithm acts on a certain level of

the harmonic hierarchy, primarily the phrase level. Thereby,

given some “anchor” chords that remain fixed in a phrase,

the aim of the algorithm is to select “proper” chord se-

quences that connect the intermediate parts of the fixed

chords, under the conditions introduced by the melodic

material to be harmonized. The evaluation of the algorithm

incorporates a comparison between the proposed constrained

HMM (CHMM) and a “typical” HMM, which incorporates

prior probabilities for the beginning and ending chords.

The results indicate that CHMMs produce harmonizations

that might be completely different to the ones produced

by HMMs, depending on the imposed constraints. The re-

sults are reported on phrases of a set of J. S. Bach chorales,

since they comprise an unofficial “benchmark” dataset for

melodic harmonization methodologies.

2. PREVIOUS WORK AND MOTIVATION

Hidden Markov models (HMMs) have been extensively

used for the automatic harmonization of a given melody,

since their formalization describes the targeted task very

well: given a sequence of observed notes (melody), find

the most probable (hidden) sequence of chords that is com-

patible with the observations, according also to a chord

transition matrix. In several studies of HMM–based melodic

harmonization methodologies, a straightforward distinction

is made on the role that some chords play to the composi-

tion – mainly the cadence of the phrase. For instance, the

cadences of produced harmonizations by the HMM devel-

oped in [10] were utilized to evaluate the system’s perfor-

mance, by comparing the cadence patterns that were pro-

duced by the system to the ones observed in the dataset.

Several HMM approaches discuss the utilization of some

methodological tools to amplify the role of the cadence

in the harmonization process. For instance, in [11] and

[12] a backwards propagation of the HMM methodology

is proposed, i.e. by examining the prior probabilities of

the final chord given the final melodic note. The Markov

decision process followed in [13], rewards the authentic

cadences thus providing higher probabilities to chord se-

quences that end with an authentic cadence. In [14] the

phrases are divided in tonic, subdominant, dominant and

parallel tonic chords, allowing a trained HMM to acknowl-

edge the positions of cadences, however the selection of

chords is performed through a rule–based process. A com-

mercial application utilizing HMM for melodic harmonic

is mySong [15], which receives the melody by the singing

voice of the user, extracts the pitches of the melody and

employs an HMM algorithm to provide chords for the melody.

The approach followed therein is equivalent to the one de-

scribed in Section 3.1 (and in Equation 1), which is also

used as a starting point towards the formalization of the

BCHMM. According to the HMM approach utilized by

mySong, prior probabilities are considered not only for the

beginning chord of a piece, but also for the ending one,

a fact that further biases the choice of solutions towards

ones that incorporate first and final chords that are more

often met in the training dataset.

The approach presented in this paper is motivated by the

research in the aforementioned works, but it is different

on a fundamental aspect: it allows the deterministic (not

probabilistic) insertion of chords at any place in the chord

sequence. Such an approach is important since it permits

the extension of the “learned” transitions with, potentially

allowing to build composite harmonization that comprise

characteristics from various idioms. To this end, the iso-

lation of the harmony in “strategic” harmonic positions

(e.g. the cadence, the beginning or intermediate parts of

a phrase) is expected to contribute to the project’s perspec-

tive.

3. INTERMEDIATELY–CONSTRAINED

PROBABILISTIC HARMONIZATION

The aim of the proposed methodology is to allow the prob-

abilistic harmonization, while allowing prior determina-

tion of intermediate chords (also named as checkpoints in

the literature [9]). The intermediate chords may either be

specified by an algorithmic process that determines music

structure on a higher hierarchical level, or may be directly

inserted by a human annotator. Some examples of algo-

rithm classes on higher hierarchical levels that could be

utilized for providing intermediate anchor chords are rule-

based approaches, generative grammars, or even Markov

models trained with chords on a sparser time scale (e.g.

the beginning, the middle and the final chord of phrases).

Additionally, the fact that direct human intervention is en-

abled, allows the presented methodology to be the back-

bone of a melodic harmonization assistant, which allows

its user to specify a harmonic “spinal chord” of anchor

chords that are afterwards connected by chord sequences

that give aesthetic reference to a learned idiom.

An abstract example of a melodic harmonization process

that incorporates some fixed anchor points is demonstrated

in Table 1. Therein, a melodic line denoted by mi i ∈
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1, 2, . . . , 8 (supposed length 8) is harmonized with some

given intermediate chords as constraints, namely Ii, i ∈
1, 2, 3. The intermediate chords have been applied to spe-

cific notes of the melody, i.e. I1 on m1, I2 on m5 and I3
on m8. The first and final notes are harmonized with fixed

chords for demonstration purposes, either one or both of

them could be harmonized automatically by the variation

of the HMM variation discussed in this paper. After the in-

termediate fixed chords have been defined, the boundary–

constrained variation of the HMM (BCHMM) is utilized

for each of the successive parts that begin and/or end with

a fixed chord. It has to be highlighted that the BCHMM is

an abbreviation signifying an intermediate step of the pro-

posed CHMM methodology. In this step only boundary

constraints are considered. In the case where the beginning

and ending chords of the phrase are not fixed, the bound-

ary constraints apply only on the fixed edge; the non–fixed

edge is harmonized by utilizing the typical probabilistic

HMM boundary condition, as discussed in the next para-

graphs. For the example in Table 1, the BCHMM algo-

rithm is applied twice, once of each pair of consecutive

anchor chords – namely BCHMM1 for connecting I1 with

I2 and BCHMM2 for connecting I2 with I3.

mel. m1 m2 m3 m4 m5 m6 m7 m8

con. I1 I2 I3
C1

1
C1

2
C1

3
C2

1
C2

2

︸ ︷︷ ︸︸ ︷︷ ︸

BCHMM1 BCHMM2

︸ ︷︷ ︸

CHMM

Table 1. Abstract example of the proposed harmonization

algorithm. On top (mi) the melody notes to be harmonized

are illustrated, below (Ii) the chord that are given as con-

straints and in the bottom (C
j
i ) the chords produced by the

j–th BCHMM method application.

The presented algorithm discusses only the level of chord

labeling, i.e. its goal is to attribute a chord symbol – ex-

pressed as a GCT structure – disregarding information about

harmonic rhythm and voice leading. Harmonic rhythm is a

crucial matter that defines a vital part of a harmonization’s

character, however, within the context of the prototypical

evaluation of the proposed method, a chord is considered

to accompany every note of the melody; a similar approach

has often been endorsed in past research. Similarly, voice

leading is also an important aspect of harmonization, while

one could arguably consider that voice leading is some-

times fundamental in a sense that the movement of each

separate voice defines the final vertical shape of the har-

monic blocks. Nonetheless, some primitive experimental

results on automatic harmonization with HMMs indicate

that the GCT bases and extensions of most probable chord

successions, as reflected in a transition matrix, encapsu-

late the potential of efficient voice leading, allowing the

successions of vertical harmonic blocks to be combined in

such a way that an efficient voice leading algorithm would

potentially interpret some basic horizontal characteristics.

Although this argument is clearly supported by the exam-

ples presented in the experimental results section, a more

elaborate examination is left for future work.

3.1 Intermediate anchor chords as boundary

constraints

The chords that “connect” two successive fixed–boundary

chord segments are defined by the aforementioned varia-

tion of HMM, the BCHMM. Throughout the development

of the BCHMM, a nomenclature relative to the subject un-

der discussion will be followed, i.e. the dataset will com-

prise musical pieces (more specifically harmonic reduc-

tions of pieces), the states will represent chords and the

observations will describe melody notes. To this end, the

set of possible states–chords will be denoted by S, while

the letters C and c will be used for denoting chords. The

set of all possible observations–notes will be denoted as Y ,

while Y and y will be denoting melody notes. Specifically,

the capitalized letters will be used to denote statistical vari-

ables, while their instantiation variables will be denoted by

lower case letters. For example, P (Ci = ci) denotes the

probability that the chord in the i–th position is a ci chord

(where ci is a specific chord, e.g. a [7, [0, 4, 7], [10]] chord

in GCT form, which is a dominant seventh chord).

An initial set of music phrases is considered which will

provide the system with the required statistical background,

constituting the training set. Through this dataset the statis-

tics that are induced concern three aspects:

1. The probability for each state (chord) to be a begin-

ning chord. This distribution is computed by exam-

ining each beginning chord for each phrase in the

dataset and is denoted as π(C1 = c), c ∈ S.

2. The probability for each state (chord) to be an ending

chord. This distribution is computed by examining

each ending chord for each phrase in the dataset and

is denoted as τ(CT = c), c ∈ S.

3. The probability that each state follows another state,

denoted as P (Ci = ci|Ci−1 = ci−1), ci, ci−1 ∈ S.

4. The probability of a chord being played over a melody

note, denoted as P (Ci = ci|Yi = yi).

These probabilities are related during the computation of

the overall probability that a certain chord sequence (Ci =
ci, i = 1, 2, . . . , T ) is applied over an observed melody

(Yi = yi, i = 1, 2, . . . , T ). This overall probability is

computed by

P (Ci = ci|Yi = yi) = Pπ Pµ Pτ , (1)

where

Pπ = π(C1 = c1) P (C1 = c1|Y1 = y1), (2)

Pµ =

T∏

i=2

P (Ci = ci|Ci−1 = ci−1)

P (Ci = ci|Yi = yi), (3)

Pτ = τ(CT = cT ) P (CT = cT |YT = yT ). (4)
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An optimal sequence of chords is one that maximizes the

overall probability (in Equation 1) 1 , by achieving an op-

timal path of states that yield a maximal combination for

the probabilities in all the counterparts (Pπ, Pµ and Pτ ),

typically through the Viterbi [16] algorithm. The proba-

bilities in Pπ promote some chords as better solutions to

begin the path of chords: the ones that are more often used

in the beginning of pieces in the dataset. Similarly, the

probabilities in Pτ advance solutions that are more often

met as concluding chords. Although the results reported in

past works indicate that Pπ and Pτ most probably create

satisfactory results, these probabilities do not guarantee

that the more often met beginning and ending chords will

be utilized. A similar comment can be made about some

strategies that have been proposed, which focus on con-

structing satisfactory cadences, by beginning from the end

of the phrase to be harmonized and employing the Viterbi

algorithm from “right-to-left”. Specifically, while the latter

approaches have an increased bias towards the cadence part

of the phrase, it is again not guaranteed that the cadence or

the beginning chord of the phrase will be satisfactory.

Regarding the probabilistic scheme, the process for com-

puting the probability value in Equation 1, incorporates

the extraction of the statistical values for π(C1 = c1) and

τ(CT = cT ), according to the number of occurrences of

each chord as an initial or final chord respectively. For the

BCHMM approach however, no statistics are considered

for these boundary points, since they certainly (with proba-

bility 1) include the chords specified by a higher hierarchi-

cal level or by a human annotator. To be compatible with

the terminology followed hitherto for the presentation of

the HMM model, the latter comment can be expressed by

modifying the Equations 2 and 4 so that they indicate the

chords selected at temporary boundary points between suc-

cessive checkpoints as certain, while eliminating the prob-

abilities for any other chords to appear. Specifically, if the

beginning and ending chords are selected to be α1 and αT

respectively, the new probabilities that substitute the ones

expressed by Equations 2 and 4 are the respective follow-

ing:

P ′
π =

{

1, if C1 = α1

0, otherwise
(5)

P ′
τ =

{

1, if CT = αT

0, otherwise.
(6)

The probability that is therefore optimized is the follow-

ing:

P (Ci = ci|Yi = yi) = P ′
π Pµ P ′

τ , (7)

where the factor Pµ is the one defined in Equation 3. The

employment of the Viterbi algorithm under the constraints

imposed by the boundary conditions, as reflected by Equa-

tions 5 and 6, assigns zero–value probabilities to all paths,

except the ones that begin with α1 and end with αT . Fig-

ure 1 illustrates the trellis diagram of the Viterbi algorithm

under the discussed constraints.

1 In implementations of HMMs it is usually the negative log–
likelihood that is being minimized, i.e. the logarithm of the expression
in Equation 1, since the numbers that are yielded by consecutive multipli-
cations of probabilities (quantities ≤ 0) are difficult to be compared by
eye because of their small magnitude.
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Figure 1. Trellis diagram for the BCHMM. Only transi-

tions from α1 and to αT as first and last states respectively

are permitted. The intermediate trellis diagram is the same

as in a typical HMM.

3.2 Application of BCHMM in the current

harmonization system

The efficiency of the HMM, and consequently the BCHMM,

methodology relies on selecting a proper set of states to

represent the chords that are utilized in the training set,

which will subsequently be used in the harmonic genera-

tion process. The term “proper” indicates that there is a

tradeoff in the amount of information of chord represen-

tation and the number of states required to delegate each

chord in the HMM (and the BCHMM). For instance, by

describing the possible chords only as major or minor, the

number of states remains small (24 for all 12 pitch classes),

however the harmonic description is very poor. Several

works in the literature ([9, 15] among others) propose the

utilization of standard chords (e.g major, minor, dimin-

ished, augmented and major seventh), applicable to all 12

relative pitch classes of the composition key of the exam-

ined pieces. However, by devising such a chord selec-

tion scheme it is possible that important harmonic infor-

mation is excluded, since several pitch class combinations

that might appear (rather frequently in some musical id-

ioms) are disregarded.

The chord representation followed in the context of the

paper at hand is the general chord type (GCT) represen-

tation, which is able to embody the information of both

consonant and dissonant parts of a pitch class group. The

GCT incorporates three parts, the root, the base and the ex-

tensions of a chord, denoted with three different entrances

in a list of the form [root, [base], [extension]]; for exam-

ple the pitch class [7, 11, 2, 5] is represented as [7, [0, 4, 7],
[10]], which indicates a dominant seventh chord. These

parts are defined for pitch class simultaneities, according

to a process that isolates the maximal mutually consonant

pitch class combinations of this simultaneity, according

to a consonance vector that defines the intervals between

pitch classes that are considered consonant. For the chorales

of Bach, that constitute the dataset of examination, the con-

sonant intervals are considered to be the major and minor

thirds, their inversion–equivalent major and minor sixths

and the perfect fifths and fourths. A complete description

of the GCT is beyond the context of this paper and the

Proceedings ICMC|SMC|2014          14-20 September 2014, Athens, Greece

- 1086 -



interested reader is referred to [citation omitted for peer

reviewing].
The implementation of the HMM incorporated a simple

“rule–based” observation–to–state probability assignment

(P (Ci = ci|Yi = yi)) for defining the probability for each

chord to be played with each note of the melody. Specif-

ically, for each note of the melody, this “rule–based” cri-

terion provides a maximum probability for chords that in-

clude this note and a minimum for one that does not. Max-

imum probability is set to 1, while the minimum is set to

10−6. Additionally, the zero entries of the chord transition

matrices that are produced by the training simulations, are

also assigned a value of 10−6 2 . By removing the zero

entries in these matrices, a potential blocking of the algo-

rithm is avoided in situation where zero probabilities occur.

Such situations may occur either in the extreme scenario

where there is no chord to include a melodic note, or in

the even more extreme scenario where there is no probable

path connecting two predetermined anchor points.

4. RESULTS

The experimental results demonstrate in a qualitative man-

ner the effectiveness concerning several aspects of the pro-

posed melodic harmonization approach:

1. The effectiveness of the GCT representation towards

capturing the idiom’s “chords”, providing interpreta-

tions that are in agreement with the Roman numeral

analysis.

2. The efficient adaptation of the GCT representation to

the chord bases and extension characteristics that en-

able the automatic harmonization system to be amenable

to effective voice leading. Dissonance of extensions,

should be treated for special voice leading.

3. The presented methodology’s effectiveness in terms

of the training data requirements.

4. The increase of interestingness that the insertion of

intermediate and/or boundary chords can introduce

to the composed harmony.

5. The fact that the HMMs are versatile enough to adapt

to “deterministic” harmonic constraints.

During the “unofficial” evaluation of the presented method-

ology, several test phrases were harmonized, as well as sev-

eral anchor point insertion setups were examined. The pre-

sented results include some indicative harmonizations that

have been produced by the system with different anchor

point setups. The utilized dataset comprises a selection

of phrases from the “benchmark” chorales of J. S. Bach,

specifically some chorales in the major mode.

The experimental process aims to provide indications about

the fact that the utilization of the anchor points yield har-

monizations that are potentially more “interesting” than

2 After the adjustment of the values in either the observation or the
transition matrices, these matrices could be normalized to produce a unit
sum for each chord. However, since the probability values in the matrix
entries are computed only in terms of maximizing the total probability
(ignoring its magnitude), such a normalization is not necessary.

the ones produced by the typical HMM methodology – de-

pending on the selected anchor points. Therefore, the ex-

perimental results expose the ability of the proposed sys-

tem, as well as the flexibility of the modified HMM scheme

towards allowing different – and potentially more interest-

ing – harmonization alternatives, according to the provided

anchor points. To this end, the system’s evaluation pro-

cesses mainly addresses the fact that the proposed method-

ology is implementable using a relatively small dataset of

training pieces.

This paper addresses the harmonization task within the

context of a certain key, thus a full harmonic reduction

of phrases is considered as input to the system; the term

“phrase” will hereby signify the melody notes and their

harmonization, as yielded from the reduction. The phrases

of the Bach chorales are divided in two sets according to

their key of composition, i.e. in major and minor phrases.

Although harmonizations of both modes were tested, the

reported results include only major mode phrases. The

GCT chords–states that are derived for the major chorales

of Bach are 41 and for the minor chorales 38, while many

of the major and minor states are overlapping, i.e. exist

both in the major and in the minor chorales. Several of

these states are redundant since their GCT expression in

fact describes chords of the same functionality, e.g. the

GCTs [0, [0, 4, 7], []] and [0, [0, 4], []] denote a major chord

in the tonic. Additionally, there is a considerable amount of

GCT states (around 15 for each mode) that occur only two

or three times in the entire dataset. The latter comments in-

dicate that the employment of a GCT clustering technique

could group some GCTs according to their harmonic func-

tionality, further reducing the states to approximately 25

for each mode. However, such a grouping methodology is

yet to be developed and it is part of ongoing research.

When harmonizing a melody with no constraints, the HMM

methodology selects the most probable sequence of chords

(hidden states) according to probabilities related to the melody’s

note to be harmonized and to probabilities related to the

transitions between pairs of states. The imposition of fixed–

chord constraints is intuitively expected to alter the har-

monization “locally”, i.e. the CHMM harmonization is ex-

pected to be different than the one provided by the typical

HMM a few chords before or after a chord that remains

fixed – if the selected chord to be fixed is different than the

one provided by the HMM. However, the application of

chord constraints in some cases provided different harmo-

nizations throughout the entire length of the phrase. The

voice leading in the examples presented below was per-

formed by a music expert; an algorithmic process for voice

leading is a future research goal. The score examples that

are analyzed in the remaining of this section are produced

by HMMs or CHMMs that trained on the same set of 30

random chorale phrases, which did not include the harmo-

nized phrases.

The example in Figure 2 amplifies the role of anchor

chords and specifically the beginning and ending chords

of a phrase. In this example, a Bach chorale melody is

harmonized with the typical HMM methodology (top) and

with anchor boundary (beginning and ending) chords de-
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noted by an asterisk. The boundary chords are the ones

utilized by Bach in the genuine chorale. An initial com-

ment concerns the fact that the HMM methodology does

not “guarantee” that the beginning and ending (boundary)

chords of a melody to be harmonized are identical to the

ones that would potentially be utilized by a human com-

poser. Additionally, the role of the boundary chords is cru-

cial: the example in Figure 2 demonstrates that different

anchor chords provided an entirely different harmoniza-

tion. Furthermore, this example shows that that the im-

position of constraints “forced” the system to follow more

“interesting” and unpredictable chord paths, since, the typ-

ical HMM methodology utilized more typical and probable

chord progressions between V and I chords. The impo-

sition of constraints on the other hand, forced the HMM

methodology to establish temporary secondary tonalities,

yielding a richer harmonic interpretation of the melodic se-

quence.

(a) typical HMM

(b) CHMM with boundary anchor chords

Figure 2. (a) The harmonization of a Bach chorale melody

with the typical HMM methodology and (b) with con-

straints on the first and final chords (indicated with an as-

terisk).

The evidently important role of the beginning and end-

ing chords leads to further inquiries about the ability of

the HMM to accurately “predict” the boundary chords of

phrases, according to the ones utilized in the genuine com-

positions. Answers to these inquiries are approached through

a statistical comparison between the boundary chords pro-

duced by the HMMs and the boundary chords assigned

by Bach. Specifically, an intuitively realistic answer is

pursued with the utilization of three different metrics on

how “correct” the boundary chords attributed by the HMM

are, considering the boundary chords of the genuine Bach

chorales phrases as ground–truth. Specifically, when the

HMM system harmonizes the melody of a phrase, the at-

tributed first and final GCT chords of the HMM harmo-

nization are compared (according to the aforementioned

three metrics) with the respective GCT chords that exist

in the genuine harmonization of Bach on the same phrase.

Therefore, these three metrics are considered to indicate

the “efficiency” of the HMM harmonization regarding the

beginning and ending GCT chords. These metrics are the

following:

1. Pitch class similarity (PC,∈ [0, 1]): the percentage

of pitch classes (PCs) in the HMM proposed chord

that are equal to the pitch classes of the “correct”

chord.

2. Root similarity (root,∈ {0, 1}): 1 if the GCT roots

are equal, 0 otherwise.

3. Exact similarity (exact,∈ {0, 1}): 1 if the GCT

chords are completely equal, 0 otherwise.

The PC criterion is the most generous one, since it pro-

vides a rather positive score to chords that are considered

wrong. For example, if the final chord in a phrase is [0,

[0, 4, 7], []] (i.e. I degree) and the HMM proposes an ar-

guably wrong [4, [0, 3, 7], []] chord (i.e. iii degree), then

it receives a score of 0.6667, since the common relative to

the root PCs are 4 and 7, while the non–common is only

the relative PC 11 (contradicting to 0). The exact crite-

rion is the strictest criterion, since it requires that the root,

base and extension between chords are the same. The root

criterion admits that it is an excessive requirement that all

the GCT chord characteristics be the same, acknowledging

also the fact that potentially different GCT bases and ex-

tensions refer to chords of the same functionality, e.g. [0,

[0, 4, 7], []] and [0, [0, 4], []]. To this end, the root criterion

accounts only the similarity of the root GCT part.

The experimental setup includes four different sets of train-

ing excerpts, namely the tr− 5, tr− 10, tr− 20 and

tr− 30 sets. Each of these sets comprises a number of

training phrases that is indicated by the numerical part of

the name, e.g. the tr− 20 describes an experimental sim-

ulation where 20 phrases are used as training data. Un-

der any training scenario, 10 test melodies are harmonized,

which belong to chorale phrases that do not pertain to the

training set. The training and testing chorales are randomly

selected in 100 random selection–training–harmonizing–

testing simulations, while different sessions are performed

for major and minor mode chorales. Thereby, the statis-

tics that are subsequently presented are extracted from 100

simulations for each setup: major or minor chorale phrases,

with different numbers of training phrases (5, 10, 20 and

30) and 10 phrases as harmonizing–testing data.

Table 2 demonstrates the mean values for the three effi-

ciency measures in the first and final chords of the HMM

harmonizations, for the major and the minor chorales and

for all training setups (different number of training pieces).

A first comment concerns the sensitivity of each metric to

the number of training pieces. For instance, the PC met-

ric remains relatively steady regardless of the number of

pieces as a training set, while the remaining two metrics

increase considerably as the number of training pieces in-

crease. Specifically, for the major pieces the increase is

around 10%, while for the minor piece around 4-5%. This

fact indicates that the number of coinciding pitch classes is

a rather vague measure, incorporating little musical infor-

mation, since this measure does not reveal the dense im-

pact that the increase of the training data would expectedly

have.

Except from the imposition of boundary chords, the in-

sertion of intermediate chords can also produce interesting

results. The example depicted in Figure 3 discusses the
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Beginning Ending

major minor major minor

pitch class similarity (PC)

tr-5 0.8635 0.7917 0.9373 0.8777
tr-10 0.8698 0.8014 0.9437 0.8827
tr-20 0.8650 0.8008 0.9358 0.8934
tr-30 0.8670 0.7970 0.9533 0.8884

root similarity (root)

tr-5 0.4820 0.4110 0.6860 0.7330
tr-10 0.4940 0.4060 0.7460 0.7720
tr-20 0.4900 0.4420 0.7770 0.8010
tr-30 0.5310 0.4380 0.8230 0.7840

exact matches (exact)

tr-5 0.4360 0.3370 0.6530 0.4580
tr-10 0.4530 0.3280 0.7220 0.4990
tr-20 0.4660 0.3740 0.7570 0.5020
tr-30 0.5120 0.3710 0.7920 0.4980

Table 2. Efficiency of the typical HMM harmonization

regarding the first and final chords, according to the three

defined metrics.

harmonization of a Bach chorale in four different versions.

Specifically, Figure 3 (a) demonstrates the harmonization

produced by the typical HMM methodology, while the har-

monization in (b) is produced with constraints on the bound-

ary chords (as indicated by the asterisks). The constraints

used in the phrase’s boundaries are the ones utilized by

Bach in the genuine chorales. The imposition of the bound-

ary constraints does not produce a harmonization that is

entirely different regarding the selection of GCT chords

(unlike the example shown in Figure 2), however the voice

leading that was assigned by the music expert in both phrases

is different. The harmonization became more interesting

when the music expert indicated the insertion of the dimin-

ished chord marked with an asterisk in Figure 3 (c) (fifth

chord). This anchor chord changed the harmonization en-

tirely; even when the boundary constraints were alleviated,

the harmonization produced by the CHMM system (Fig-

ure 3 (d)) was again completely novel. The fact that differ-

ent constraint conditions produce diverse harmonizations,

amplifies the motivation to utilize a “deterministic” chord

selection scheme along with the probabilistic HMM frame-

work.

5. CONCLUSIONS

The paper at hand presents a methodology for performing

automatic melodic harmonization, i.e. providing chords on

the notes of a given melody, through a methodology that is

based on the hidden Markov model (HMMs), namely the

constrained HMM (CHMM), which harnesses the capabil-

ities of the HMMs to perform harmonizations with strictly

specific requirements expressed through the employment

of certain chords to harmonize certain notes of a melody.

Such “anchor” chords would be selected either by an algo-

rithmic (probably non–probabilistic) process functioning a

higher level of the harmonic hierarchy, or by a user. The

utilization of specific chords imminently enhances the au-

(a) typical HMM

(b) CHMM with boundary anchor chords

(c) CHMM with boundary and intermediate anchor chords

(d) CHMM with an intermediate anchor chord

Figure 3. (a) The harmonization of a Bach chorale melody

with the typical HMM methodology and with constraints

on (b) the boundary chords, (c) the boundary and one in-

termediate chord and (d) only one intermediate chord. The

fixed intermediate chords selected by a human annotator

are indicated on the score with an asterisk.

tomatically produced harmonizations since the proper se-

lection of some key–chords leads the system to interesting

harmonic paths. For instance, the selection of the first and

final (boundary) chords of a phrase, which chords strongly

imply the tonal constitution, is a crucial part for generat-

ing harmonizations that provide strong reference to an in-

tended musical idiom – fact that is also highlighted by sev-

eral works in the automatic harmonization literature.

According to the experimental results reported in this pa-

per, the typical HMM approach assigns beginning and end-

ing chords of phrases that are more probable, a fact that po-

tentially contradicts with a composer’s choices. Addition-

ally, the imposition of fixed–chord constraints, even only

on the boundaries of phrases, force the CHMMs to pro-

duce harmonizations that are significantly different to the

ones produced without constraints – and often more inter-

esting since they are more “improbable”. The chord repre-

sentation that is employed is the general chord type (GCT)

representation, which is a novel technique under develop-

ment and allows the selection of a relatively small number

of chords as states, without disregarding harmonic infor-

mation from chord extensions.

The proposed technique is a part of an ongoing research

in the context of the COINVENT project, according to

which the invention of new concepts in automated harmo-

nization is approached by blending harmonic concepts of

several musical idioms. To this end, the determination and
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utilization of important harmonic parts of idioms is pur-

sued, e.g. selecting proper fixed–chord constraints (“an-

chor” chords) and voice leading among others. Therefore,

the proposed technique remains to be integrated with an

algorithmic “anchor” chord selection mechanism, as well

as an algorithmic process that performs idiom–dependent

voice leading. The development of the CHMM method-

ology would potentially be harnessed with even more ad-

vanced and abstract harmonic constraints. For example,

the user of a system would not only select entire chords to

harmonize certain notes of phrases, but also specific notes

that should be present along with a note of a harmony,

therefore reducing the chord possibilities. Additionally, as

the results indicated, by “fixing” the final boundary point it

is not expected to lead to a “fixed” cadential pattern, since

the absolute similarity in the final chord between the gen-

uine and the artificial harmonies was not followed by an

increase to the pre–final chords. The utilization of longer

harmonic segments in places where cadences happen has

been previously discussed in the literature [10], providing

pointers for future work that would include larger cadential

“chunks” as ending boundary points. Finally, the bound-

ary constrained formalization could be harnessed with a

variable order Markov model in the hidden layer, like the

predictions suffix trees, producing results by potentially in-

corporating information over longer harmonic parts for de-

ciding the next chords.

Acknowledgments

This work is founded by the COINVENT project. The

project COINVENT acknowledges the financial support of

the Future and Emerging Technologies (FET) programme

within the Seventh Framework Programme for Research

of the European Commission, under FET-Open grant num-

ber: 611553. Special thanks are due to Costas Tsougras for

valuable discuss on the generated harmonizations and for

performing the voice leading in the presented examples.

6. REFERENCES

[1] K. Ebcioglu, “An expert system for harmonizing four-

part chorales,” Computer Music Journal, vol. 12, no. 3,

pp. 43–51, 1988.

[2] F. Pachet and P. Roy, “Musical harmonization with

constraints: A survey,” Constraints, vol. 6, no. 1, pp.

7–19, Jan. 2001.

[3] P. Donnelly and J. Sheppard, “Evolving four-part har-

mony using genetic algorithms,” in Proceedings of the

2011 International Conference on Applications of Evo-

lutionary Computation - Volume Part II, ser. EvoAp-

plications’11. Berlin, Heidelberg: Springer-Verlag,

2011, pp. 273–282.

[4] S. Phon-amnuaisuk and G. A. Wiggins, “The four-part

harmonisation problem: A comparison between ge-

netic algorithms and a rule–based system,” in In pro-

ceedings of the AISB99 symposium on musical cretiv-

ity. AISB, 1999, pp. 28–34.

[5] S. Suzuki, “Four-part harmonization using probabilis-

tic models: Comparison of models with and without

chord nodes,” Stockholm, Sweden, pp. 628–633, 2013.

[6] R. P. Whorley, G. A. Wiggins, C. Rhodes, and M. T.

Pearce, “Multiple viewpoint systems: Time complex-

ity and the construction of domains for complex musi-

cal viewpoints in the harmonization problem,” Journal

of New Music Research, vol. 42, no. 3, pp. 237–266,

Sep. 2013.

[7] S. A. Raczyski, S. Fukayama, and E. Vincent, “Melody

harmonization with interpolated probabilistic models,”

Journal of New Music Research, vol. 42, no. 3, pp.

223–235, 2013.

[8] J.-F. Paiement, D. Eck, and S. Bengio, “Probabilistic

melodic harmonization,” in Proceedings of the 19th

International Conference on Advances in Artificial In-

telligence: Canadian Society for Computational Stud-

ies of Intelligence, ser. AI’06. Berlin, Heidelberg:

Springer-Verlag, 2006, pp. 218–229.

[9] C.-H. Chuan and E. Chew, “A hybrid system for auto-

matic generation of style-specific accompaniment,” in

Proceedings of the 4th International Joint Workshop on

Computational Creativity. Goldsmiths, University of

London, 2007.

[10] N. Borrel-Jensen and A. Hjortgaard Danielsen,

“Computer-assisted music composition – a database-

backed algorithmic composition system,” B.S. The-

sis, Department of Computer Science, University of

Copenhagen, Copenhagen, Denmark, 2010.

[11] M. Allan and C. K. I. Williams, “Harmonising chorales

by probabilistic inference,” in Advances in Neural In-

formation Processing Systems 17. MIT Press, 2004,

pp. 25–32.

[12] M. Hanlon and T. Ledlie, “Cpu bach: An auto-

matic chorale harmonization system,” 2002. [Online].

Available: http://www.timledlie.org/cs/CPUBach.pdf

[13] L. Yi and J. Goldsmith, “Automatic generation of four-

part harmony.” in BMA, ser. CEUR Workshop Proceed-

ings, K. B. Laskey, S. M. Mahoney, and J. Goldsmith,

Eds., vol. 268. CEUR-WS.org, 2007.

[14] N. Yogev and A. Lerch, “A system for automatic audio

harmonization,” 2008.

[15] I. Simon, D. Morris, and S. Basu, “Mysong: Automatic

accompaniment generation for vocal melodies,” in Pro-

ceedings of the SIGCHI Conference on Human Factors

in Computing Systems, ser. CHI ’08. New York, NY,

USA: ACM, 2008, pp. 725–734.

[16] J. Forney, G.D., “The viterbi algorithm,” Proceedings

of the IEEE, vol. 61, no. 3, pp. 268–278, Mar. 1973.

Proceedings ICMC|SMC|2014          14-20 September 2014, Athens, Greece

- 1090 -

http://www.timledlie.org/cs/CPUBach.pdf

