
Declarative Composition and Reactive Control in Marsyas

Jakob Leben

Computer Science

University of Victoria

Canada

jakob.leben@gmail.com

George Tzanetakis

Computer Science

University of Victoria

Canada

gtzan@cs.uvic.ca

ABSTRACT

We present a new coordination language for audio process-

ing applications, designed for the dynamic dataflow capa-

bilities of the Marsyas C++ framework. We refer to the

language as Marsyas Script. It is a declarative coordina-

tion language that enables intuitive and quick composition

of dataflow networks and reactive processing control. It

separates the tasks of dataflow coordination and compu-

tation, while increasing the expressivity of the coordina-

tion level. This allows more dynamic dataflow behavior

and more powerful interaction with other multimedia ap-

plications and the physical world. It also increases code

portability and allows multiple tools to operate on the same

network definition with the purpose of real-time or non-

real-time execution, network visualization, operational in-

spection and debugging, etc. This naturally enhances and

extends the functionality within the domain of the Marsyas

framework and makes it more accessible to users of other

audio software frameworks and languages.

1. INTRODUCTION

There is a growing field of applications that combine sound

analysis and synthesis in dynamic ways and frequently in

real time. Support for such applications in terms of soft-

ware is rather fragmented. Audio stream processing in

itself is most naturally represented with the synchronous

dataflow model of computation (SDF [1]); the most ba-

sic form of it with single data rate across the network is

implemented in most software frameworks for this pur-

pose. In this model, all data flowing between processing

blocks or actors are arrays of a single fixed size. How-

ever, algorithmic music creation, but also sound analysis,

typically require expressivity beyond the static single-rate

model. Frameworks that focus on sound synthesis and mu-

sic creation (e.g. SuperCollider [2], ChucK [3] 1 , Pure

Data [4], Max/MSP, ...) typically maintain the single-rate

SDF model. On the other hand, to provide expressive mu-

sical control over sound, they implement powerful means

of manipulating sparser and variable-rate streams of con-

trol data.

1 ChucK is unique in operating on the single-sample dataflow level.

Copyright: c©2014 Jakob Leben et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

In contrast, one common property of sound analysis ap-

plications is that they operate on streams that span dif-

ferent information domains: e.g. time domain (audio),

frequency domain (spectrum), statistical summarization of

information streams, etc. This requires more expressive

dataflow models: streams of different data formats and

rates. Moreover, processing itself is sometimes affected by

information produced as the result of analysis; the dataflow

structure must adapt to the content of the streams being

processed (e.g. detected sound onsets). There has been

very little support for integration of such multi-rate and

dynamic dataflow characteristics with easy-to-use frame-

works for sound synthesis and music creation.

The formalization of multi-rate and dynamic dataflow mod-

els has mostly taken place in the signal processing com-

munity (for a comprehensive overview see [5]) with ap-

plications mainly dealing with the encoding and decoding

of complex multimedia streams. Elaborate formalisms are

most frequently employed on embedded systems, but mul-

timedia applications on general-purpose systems also bor-

row some of the techniques. Despite an abundance of for-

malisms and concrete applications, few solutions are pro-

vided in form of abstract frameworks for general purpose

computing machines and accessible to a wider, less techni-

cal user community or with focus on computer music.

Marsyas [6, 7, 8] was one of the first frameworks to pro-

vide multi-rate and constrained dynamic dataflow capa-

bilities targetting specifically sound analysis applications,

with a user-friendly programming interface on the level of

dataflow coordination as well as efficient implementation

on the level of internal actor computation. It is based on

the well-established C++ language and running on general-

purpose computing machines. In this paper, we present

Marsyas Script - a new coordination language that greatly

simplifies existing workflow as well as facilitates further

aspects of dataflow coordination. It makes powerful sound

analysis even more accessible to less-technical audiences

and increases flexibility required for interfacing with other

sound synthesis and computer music frameworks.

2. CONTRIBUTIONS

Coordination of dataflow networks in Marsyas was previ-

ously done in imperative languages (C++ or through Python

bindings), which made the structure of networks barely ap-

parent from code used to specify them. Marsyas Script is

a completely declarative language. Readability of code is

greatly improved in the new language, especially because

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 325 -

mailto:jakob.leben@gmail.com
mailto:gtzan@cs.uvic.ca
http://creativecommons.org/licenses/by/3.0/

the hierarchical structure of code directly corresponds to

the hierarchical network composition, and the dataflow-

specific concept of scope simplifies addressing of different

parts of a network (see section 5.6).

Marsyas Script provides expressive programming of re-

active control flow, regardless of whether information orig-

inates from the external world - Open Sound Control (OSC)

[9] messages, graphical user interfaces, etc. - or internally -

as a result of data analysis. This gives more power over the

dynamic dataflow capabilities into the hands of the user,

as well as facilitates more rich interaction with other ap-

plications. Another benefit of a high-level coordination

language is reliance on powerful and efficient functional-

ity implemented in the host language (C++). The large

number of audio processing algorithms provided by the

Marsyas C++ library is accessible as dataflow actors. The

performance is just as efficient as if dataflow coordination

was expressed in C++.

Moreover, code translation is quick and performed on-

the-fly at application start-up. This increases portability

of network definition code between machines, users and

applications. It allows a number of precompiled tools to

operate on the same network definition. We have imple-

mented a generic executable that instantiates and runs any

network defined in the new languages, either for real-time

or non-realtime audio processing similar to an audio plu-

gin host but with more extensive functionality. Another ap-

plication allows inspection and debugging of dataflow by

visualization of network structure, step-by-step execution

and selective plotting of intermediate stages.

3. RELATED WORK

In spite of the dataflow model of computation having a

straightforward visual representation and yielding many

visual programming frameworks (such as Pure Data [4],

Clam [10], Max/MSP, NI Reaktor, to name just a few most

popular in the domain of sound processing), textual pro-

gramming for sound processing is not only persistent (for

example SuperCollider [2], ChucK [3]), but new languages

and frameworks keep being created, indicating that textual

programming has its own merits among which the com-

bination of code expressivity and brevity is probably the

major factor.

A contemporary trend is the resurrection of fine-grained

dataflow programming. It allows compliation into opti-

mized code for today’s and tomorrow’s computing devices

with modest support for coarse-grained task parallelism

and increasing support for massive fine-grained data par-

allelism. Examples are Faust [11] and more recent Kro-

nos [12, 13] for audio, as well StreamIt [14] for general-

purpose stream processing. In contrast, the Marsyas Script

is a rather coarse-grained coordination language and its

strength remains reusability of the large collection of low-

level algorithms already developed in the Marsyas C++ li-

brary.

ESSENTIA [15] is another recent C++ library of algo-

rithms specifically for audio analysis and music informa-

tion retrieval. Akin to Marsyas, algorithms are embedded

in a dataflow actor-like interface, they are C++ templates,

so they accept any input and output data type as parameter

and vector data may be of any size, which supports equiva-

lent dataflow flexibility as Marsyas. However, there is only

a basic support for composition of actor networks, there is

no concept of control flow and no support for reactive co-

ordination of actors.

The syntax and reactive control in Marsyas Script were

inspired by the QML language which is part of the Qt

framework for graphical user interface development. QML

is also a declarative language where graphical items are

composed hierarchically in a similar syntactical fashion

and properties of items are bound to reactive expressions

involving properties of other items.

It is worth noting that such syntax for hierarchical com-

position could not be used to define a dataflow network

without the concept of implicit patching as introduced pre-

viously in Marsyas [7]. A similar functionality of implicit

patching is present in Faust [11], although there it does

not rely on hierarchical composition, but patching is rather

performed by binary composition operators.

There has been previous work on expressive control flow

in Marsyas [16] but only in reaction to explicitly sched-

uled timed events, rather than implicit changes of control

values. There was no concept of reactive bindings as de-

fined here in section 5.4. The paper [16] also mentions

a ”Marsyas Scripting Language (MSL)” featuring declar-

ative network composition similar to Marsyas Script pre-

sented here, but to the best of our knowledge, that work has

never been completed, and the MSL only supports limited

imperative programming.

Our temporal operators for reactive control flow (see sec-

tion 5.4) are inspired by declarative synchronous languages

LUSTRE and SIGNAL [17] where similar operators ex-

ist to filter one sequence of events to those that match oc-

curences of events in another sequence. However, in con-

trast to these languages where sequences only have values

at transient moments in time, our control flow is rather sim-

ilar to values in the imperative language ESTEREL [17]

which persist and are observable across time while only

their change is discrete. The temporal operators thus sam-

ple values from one stream at arbitrary moments as if it

was a continous step function of time.

Our control alternative (the when statement, 5.5) is in-

spired by the concept of states in QML. It serves to change

larger-scale behavior depending on events. This is similar

to composition of behaviors and events in the Functional

Reactive Programming paradigm (FRP [18]). Since con-

trols can result in changes of output rates and formats of

actors, enabling and disabling actors, or potentially even

instantiation of new actors, this may also facilitate a partic-

ular form of dynamic dataflow where the network structure

is controlled by a higher level state machine.

4. MARSYAS ARCHITECTURE

The concepts in Marsyas Script correspond to a large de-

gree with the concepts of the Marsyas C++ framework which

provides the underlying implementation. Dataflow actors

are called MarSystems - they represent basic building blocks

for sound analysis and synthesis algorithms: audio file and

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 326 -

real-time input and output, feature extraction, statistics,

sine and noise generators, filters, etc.

To support different dataflow rates, input and output data

of any MarSystem is a matrix (2D array) of arbitrary di-

mensions, where columns represent successive informa-

tion in time, and rows represent concurrent information,

possibly originating from different producers or distributed

to different consumers. All input and output is packed into

such data structures. Hence all input and output of an

individual MarSystem is of equal rate (respectively), but

MarSystems in a network may have different rates. Each

MarSystem has an intrinsic relation between its input and

output rates, but can operate at any mutliple of this ratio.

MarSystems compose hierarchically. Connection among

siblings are established using the implicit patching paradigm

[7]: instead of explicitly connecting each input and output,

there is a special class of composite MarSystems which

connect their children in specific patterns. Examples in-

clude: serial composition, parallel composition (compos-

ite input is split among children) fanout (entire input is

passed to each child), etc. Data rates among connected

siblings must match, hence they are automatically prop-

agated from outputs to inputs. Rates may change across

hierarchical levels: special composites execute their chil-

dren multiple times within each of their own execution,

each time passing successive chunks of input and accumu-

lating output. We have found this to be an architecture

flexible enough for a variety of audio synthesis and anal-

ysis scenarios, while allowing efficient implementation on

general-purpose computers, even in the case of dynami-

cally changing rates.

Each MarSystem has a set of parameters named controls.

The controls can be changed and observed asynchronously

with respect to the dataflow execution. They may control

any aspect of a MarSystem’s operation, including its in-

put and output data rates. They are also used for output

of sporadic information, typically resulting from analysis

(detected pitches and onsets for example). Controls can be

linked, so that when one produces new information all oth-

ers are updated. This is the foundation for the expressive

reactive control described in section 5.4.

5. SYNTAX AND SEMANTICS

This section gives an overview of the syntax. Only high-

level grammatical symbols are described. In particular, the

terminal symbols (numbers, strings, identifiers, etc.) are

not decomposed, as they follow usual lexical conventions.

The reader is invited to see online Marsyas documentation

for a detailed exposition.

〈script〉

✲✲

〈name〉 :

〈actor〉 ✲✛

〈actor〉

✲✲ 〈type〉
〈filename〉

{ ❄

〈child〉
〈prototype〉
〈control〉

〈alternative〉

}

✲✛

〈child〉

✲✲ ->

〈name〉 :

〈actor〉 ✲✛

〈prototype〉

✲✲ ˜ 〈name〉 : 〈actor〉 ✲✛

〈control〉

✲✲

+ public

〈name〉 = 〈value〉 ✲✛

〈alternative〉

✲✲ when (〈value〉) { ❄

〈path〉 = 〈value〉
} ✲

✲

else { ❄

〈path〉 = 〈value〉
}

✲✛

〈path〉

✲✲

/
❄〈name〉 /

〈name〉 ✲✛

〈value〉

✲✲ 〈boolean〉
〈integer〉
〈real〉
〈string〉
〈matrix〉
〈path〉

(〈value〉

❄〈operator〉 〈value〉

)

✲✛

5.1 Script

A script consists of a definition of a single top-level actor

which, by recursion, will include the definitions of all its

children. The top-level actor may optionally be assigned a

name, otherwise a default name ”network” will be assigned

automatically.

5.2 Actors

An essential component of an actor definition (the 〈actor〉
symbol) is either a type name (corresponding to the C++

class name of a MarSystem), or a filename of another script,

in which case the entire network defined in that script is

used as a prototype.

The body of an actor definition within curly braces spe-

cializes the definition of its type by assigning values to

controls, adding new controls and adding actor instances

as children.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 327 -

A child actor instance (the 〈child〉 symbol) is introduced

using the arrow symbol, which creates an intuitive associ-

ation with the flow of data between parents and children or

between siblings. A child may optionally be named, which

allows it to be addressed and also plays a role in name

lookup of other actors (see 5.6). Following the child’s

name is its definition, a recursion of the syntax of its par-

ent definition. Syntactical hierarchy thus reflects actor net-

work hierarchy.

5.3 Controls

A control declaration (the 〈control〉 symbol) operates on

controls of the enclosing actor definition. It can either as-

sign values to existing controls or create new controls (if

prefixed with the + symbol).

Some controls are defined by C++ implementations of

MarSystems and those directly affect MarSystem opera-

tion or report results of its computation or changes of its

internal state. A new control may function as a named re-

sult of a control computation to be reused in other control

expressions. Another use is to make control values deeper

in the hierarchy more accessible to the outside world by

assigning them to new top-level controls.

When assigning values to existing controls, the type of

the value must match the type of the control. When creat-

ing new controls, their type becomes that of the assigned

value.

Controls (either pre-existing or new) may also be declared

public (by prefixing the name with the public keyword),

which at the moment of this writing has no effect on the in-

ternal operation of the script, but it affects how controls are

treated by external tools: for example the graphical inspec-

tor application optionally hides all non-public controls.

5.4 Control Values and Reactive Expressions

A control assignment is a binding between a control and

the value of a reactive expression. An expression is a com-

position of literal constant values, control paths (5.6) de-

noting their changing values over time, and operators on

those values. Whenever any constituent value changes, the

expression is reevaluated and the value of the bound con-

trol is updated.

Each value has one of the following types, inherited from

the Marsyas C++ framework: integer or real number, 2D

matrix of real numbers, boolean, string. An expression also

has a type: that of its result value, as defined intrinsically

by operators and types of operands.

The following arithmetic operators are defined on any

pair of numbers or equal-size matrices: +, -, *, /. On

matrices, they operate point-wise. The following arith-

metic comparison is defined on numbers: <, >, <=, >=. The

following comparison is defined among pairs of numbers,

pairs of equal-sized matrices, or pairs of any other identical

types: ==, !=.

There are two special temporal operators: on and when.

The on operator produces a value that becomes the current

value of the left-hand-side operand whenever the right-

hand-side value changes. The when operator does the same,

but only when the boolean right-hand-side operand becomes

true.

5.5 Control Alternative

The declaration of a control alternative (the 〈alternative〉
symbol) consists of a condition in form of a boolean ex-

pression and two sets of control assignments separated by

else. Whenever the value of the condition changes, either

the first or the second set of bindings will be activated, de-

pending on whether the new value of the condition is true

or false, respectively. Note that the else part is optional,

in which case no change of control bindings will happen

when condition switches from true to false.

5.6 Name Scope and Path Resolution

Controls in control expressions (5.4) may be those belong-

ing to any named actor in the network. They are addressed

using control paths (the 〈path〉 symbol). A path consists of

a name of a control optionally prefixed by a sequence of

actor names in a hierarchical order from the control owner

up.

A path always has an actor as an implicit origin; the first

name in the path denotes a child actor of the origin. The /

at the beginning of a path makes a path absolute, so regard-

less of where it is used it’s origin is always the top-level

actor. The top-level actor’s name is actually never used - it

is represented by the initial /. Paths starting with a name

are relative paths originating at the actor definition within

which they are used.

A path may address controls across hierarchy without the

need for all the actors on the way to be named. This is

enabled by the concept of scope. Each named actor (5.2)

is a scope which contains names of those descendants that

are hierarchically separated from the scope actor only by

unnamed actors, regardless of how hierarchically remote

they are. In addition, the root actor is considered a scope,

regardless of whether it is named. Names of actors must

be unique within their enclosing scope. Thus, a path is a

sequence of named actors where each following actor is in

the previous one’s scope but not necessarily a direct child.

An absolute path also conforms to the Open Sound Con-

trol message address specification [9], which provides an

immediate addressing solution for communication with the

outside world.

5.7 Prototypes

A prototype declaration (the 〈prototype〉 symbol) allows an

actor definition to be used as a new actor type and thus in-

stantiated multiple times. It is introduced using the ˜ sym-

bol, followed by a name for the new type, and its definition

(the 〈actor〉 symbol).

Any actor definition (including prototypes themselves)

may use prototypes already defined in the same or enclos-

ing actor definitions. On the other hand, a prototype def-

inition is an isolated scope (5.6), preventing its nested child

instances to be addressed from enclosing code and the other

way around - unless it is instantiated and given a name.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 328 -

6. EXAMPLES

A complete example of typical usage of Marsyas Script

and framework is provided in figure 1. The script imple-

ments a basic onset detection algorithm consisting of peak

picking from an onset detection function defined as spec-

tral flux.

The top-level controls inSamples and israte specify the

desired audio block size and sampling rate at the root of

the dataflow graph - all downstream actors automatically

adjust their input and output formats. The AudioSource

will open a connection to the default audio device for real-

time audio acquisition and automatically re-block audio

as specified above. The ShiftInput produces an overlap-

ping sequence of audio windows with the hop size of in-

put amount of samples and window size specified with the

winSize control.

The stream of overlapping audio windows is forked into

two branches: one computes signal energy and delays it to

temporally match the onsets detected in the other branch

which requires inspection of past and future windows to

determine whether a window is an on onset.

The additional top-level control onset is defined as the

normalized audio energy at times of onsets. This is en-

abled by combining the conversion of the energy value

from data flow to control flow by the FlowToControl and

the boolean control value of the onsetDetected control of

the PeakerOnset, which becomes true after an audio win-

dow is detected to contain an onset and false otherwise.

Using the when temporal operator, the resulting value will

only change at times of onsets.

By executing the script in real-time using the marsyas-run

tool provided by the Marsyas framework, it is possible to

have OSC messages automatically sent for every change

of the top-level onset control, to an arbitrary destination

using UDP/IP. This allows for convenient interfacing with

other audio applications, most typically for the purpose of

audio synthesis.

For comparison, see figure 2 which shows the same algo-

rithm implemented in C++ in a manner most typical before

the introduction of Marsyas Script. To attempt better read-

ability, C++ code usually consists of three distinct steps,

the first one being actor composition, followed by control

setting and linking, and finally a run loop which conti-

nously invokes an iteration of dataflow processing. Due

to limited reactive capabilities, the run loop usually con-

tains explicit imperative inspection of control values and

computation of new ones.

The example in Marsyas Script (fig. 1) clearly shows

improved code expressivity and brevity over the C++ ex-

ample (fig. 2). Dataflow structure is much more appar-

ent. Code is not cluttered with unnecessary syntactical fea-

tures of C++. Moreover, control addressing is much sim-

pler because of locality of assignments within actor def-

initions (5.3) and sophisticated remote control path reso-

lution (5.6). Finally, interfacing with the outside world is

simple using reactive expressions to define outside-facing

controls.

Series

{

+ public onset =

(energy_out/value / energy/inSamples

when onsets/onsetDetected)

inSamples = 512

israte = 44100.0

-> AudioSource

-> ShiftInput { winSize = 1024 }

-> Fanout

{

-> Series {

-> energy: Energy

-> DelaySamples{delay=4}

-> energy_out: FlowToControl

}

-> Series {

-> Windowing -> Spectrum -> PowerSpectrum

-> Flux { mode = "Laroche2003" }

-> Memory { memSize = 25 }

-> onsets: PeakerOnset {

threshold = 6.5

lookAheadSamples = 4

}

}

}

}

Figure 1. Real-time onset detection example in Marsyas

Script. Note the clarity of structure and data flow, code

brevity and expressive control flow (the top-level ’onset’

declaration).

7. RELATED TOOLS

Along with the Marsyas Script language a set of programs

is being developed that operate on scripts. The most im-

portant one to make scripts useful is marsyas-run, which

takes a script file as argument, instantiates the dataflow net-

work defined in the script, and runs the network in real-

time (if real-time audio input or output is declared in the

script) or as fast as possible with the purpose of processing

audio files. In any case, it will stop processing when the

boolean top-level control done becomes true, which can

be used to signal the end of an input file by binding to a

control of a SoundFileSource. Moreover, control values

can be set by the user at start of the program using its ar-

guments, which allows a single parameterized script to be

used in different scenarios.

The marsyas-run program also implements OSC com-

munication using UDP/IP, and can be instructed to send

changes in controls as OSC messages, as well as apply

incoming OSC messages to control values. Since control

paths conform to the OSC address specification, there is a

direct mapping between the two concepts.

Another graphical application that helps in script devel-

opment as well as MarSystem implementation is the In-

spector. It interprets a script and provides a visualization

of the dataflow network structure. It also allows executing

the dataflow iteration by iteration and inspecting all control

values and all data flowing between actors. It is a great tool

for verification and debugging in two aspects: the aspect

of script code as well as the aspect of system integration of

C++ MarSystem code. Figure 3 shows a screenshot of the

Inspector used with a modified version of the script given

in figure 1 which sources data from an audio file.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 329 -

Figure 3. Marsyas Inspector displaying a dataflow network, a list of control values and two plots of data at different stages

of processing (before and after applying the windowing function).

MarSystemManager mng;

//// 1. Compose

// ...Create a composite and add processing actors:

MarSystem *energy_branch =

mng.create("Series", "energy_branch");

MarSystem *onset_branch =

mng.create("Series", "onset_branch");

// ...

energy_branch->addMarSystem

(mng.create("FlowToControl", "energy_out"));

onset_branch->addMarSystem

(mng.create("PeakerOnset", "onsets"));

//... Create and fill root composite

MarSystem *network = mng.create("Series", "net");

network->addMarSystem

(mng.create("AudioSource", "input"));

//...

//// 2. Configure

network->updControl("mrs_natural/inSamples", 512);

onset_branch->updControl

("PeakerOnset/onsets/mrs_real/threshold", 6.5);

//...

//// 3. Run

MarControlPtr onset_control =

onset_branch->getControl

("PeakerOnset/onsets/mrs_bool/onsetDetected");

MarControlPtr energy_control =

energy_branch->getControl

("FlowToControl/energy_out/mrs_real/value");

while(should_run)

{

network->tick();

bool onset_detected = onset_control->to<bool>();

if (onset_detected)

{

mrs_real energy =

energy_control->to<mrs_real>() / 1024.0;

// send "energy" as OSC ...

}

}

Figure 2. Real-time onset detection example in C++,

showing 3 typical distinct steps (compose, configure, run).

The example is incomplete - parts have been left out for

brevity.

8. CONCLUSIONS AND FUTURE WORK

We have shown how the new coordination language named

Marsyas Script builds on top of the functionality of the

Marsyas C++ framework with features specific to sound

analysis applications (multi-rate and dynamic dataflow).

The declarative nature and expressive reactive program-

ming features make the previous functionality more ac-

cessible to a variety of users end further empowers them

to easily express complex dynamic processing control. In

combination with the built-in OSC communication capa-

bility in the marsyas-run program, reactive control ex-

pressions provide flexibility to effectively interface with

other audio software. Marsyas Script allows development

of generic tools to inspect and debug dataflow networks of

which the Marsyas Inspector is an example. In general, it

makes network definition code more portable across appli-

cations, machines and users.

There is a broad area of research interesets and future

development that the work presented in this paper inspires.

One particular issue we would like to address is synchro-

nization of dataflow and control flow. Although control

flow in Marsyas is synchronous in itself, it is asynchronous

with respect to dataflow actor firings: control changes may

be arbitrarily interleaved with actor firings. This becomes

an issue when multiple actors depended on the same con-

trol value and a change in value occurs in the middle of a

dataflow processing iteration - they may take the control

information into account either in the current or the next

iteration. StreamIt addresses this issue with the concept of

information wavefront [14] which allows synchronization

of out-of-stream message delivery with a particular actor

firing. Another solution would be to associate a timestamp

with each control change and use it to precisely synchro-

nize the application of change with data flow. However,

the dataflow model in the most general sense (and in par-

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 330 -

ticular in multi-rate scenarios) has no well-defined associ-

ation of flow data with time and duration (only data order

is defined), so enhancing dataflow with strict temporal se-

mantics would be a prerequisite for usage of timestamps

for synchronization.

Another application of more strict temporal semantics would

be synchronization of distributed systems in a manner trans-

parent to the user, so that temporal operators could be used

on all streams equally, regardless of how remote their ori-

gin is. Conceptually, this would be an attempt at a combi-

nation of synchronicity in languages for reactive systems

[17] with multi-rate dataflow.

Marsyas Script could also enable simplification of auto-

mated unit and integration testing. No matter how small

functionality is tested, each unit test typically requires code

to set up and clean up the testing environment. Writing

this code repeatedly with only slight modifications for each

new test is a tedious endeavour. Instead, scripts could be

used as parameterized and dynamic testing environments

where individual units would be easily plugged in. The

size of this environment could be minimal, for pure unit

testing, or a complex dataflow network, for integration test-

ing.

We are also interested in translation of audio stream pro-

cessing defined in expressive and intuitive languages into

forms maximally optimized for efficient execution, includ-

ing parallelization. However, this most likely calls for work

on new foundations beyond those that the current Marsyas

C++ framework provides.

Acknowledgments

The authors gratefully acknowledge the support of the Na-

tional Science and Engineering Research Council of Canada.

We would also like to thank the many Marsyas develop-

ers and users who have influenced and tested the ideas de-

scribed in this paper.

9. REFERENCES

[1] E. A. Lee and D. G. Messerschmitt, “Synchronous data

flow,” in Proc. IEEE, 1987, pp. 1235–1245.

[2] J. McCartney, “Supercollider: a new real time syn-

thesis language,” in Proc. Int. Computer Music Conf.,

1996.

[3] G. Wang, “The chuck audio programming language.

a strongly-timed and on-the-fly environ/mentality,”

Ph.D. dissertation, Princeton University, 2008.

[4] M. Puckette, “Pure data,” in Proc. Int. Computer Music

Conf, 1997.

[5] S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and

J. Takala, Eds., Handbook of signal processing sys-

tems. Springer Science & Business, 2013.

[6] G. Tzanetakis and P. Cook, “Marsyas: A framework

for audio analysis,” Organised sound, vol. 4, no. 3, pp.

169–175, 2000.

[7] B. Stuart and G. Tzanetakis, “Implicit patching for

dataflow based audio analysis and synthesis,” in Proc.

Int. Computer Music Conf, 2005.

[8] G. Tzanetakis, “Marsyas-0.2: a case study in imple-

menting music information retrieval systems,” in Intel-

ligent Music Information Systems. IGI Global, 2007.

[9] A. Schmeder, A. Freed, and D. Wessel, “Best practices

for open sound control,” in Proc. Linux Audio Conf.,

2010.

[10] X. Amatriain, P. Arumi, and D. Garcia, “Clam: A

framework for efficient and rapid development of

cross-platform audio applications,” in Proc. 14th ACM

Int. Conf. on Multimedia, 2006.

[11] Y. Orlarey, D. Fober, and S. Letz, “Faust: an effi-

cient functional approach to dsp programming,” in New

Computational Paradigms for Computer Music. De-

latour France, 2009.

[12] V. Norilo and P. Rautatiekatu, “Introducing kronos-

a novel approach to signal processing languages,” in

Proc. Linux Audio Conf., 2011.

[13] V. Norilo, “Recent developments in the kronos pro-

gramming language,” in Proc. Int. Computer Music

Conf., 2013.

[14] S. Amarasinghe, M. Karczmarek, J. Lin, D. Maze,

R. M. Rabbah, and W. Thies, “Language and compiler

design for streaming applications,” International Jour-

nal of Parallel Programming, vol. 33, no. 2-3, pp. 261–

278, 2005.

[15] D. Bogdanov, N. Wack, E. Gmez, S. Gulati, P. Her-

rera, O. Mayor, G. Roma, J. Salamon, J. Zapata, and

X. Serra, “Essentia: an open-source library for sound

and music analysis,” in Proc. 21st ACM Int. Conf. on

Multimedia, 2013, pp. 855–858.

[16] N. Burroughs, A. Parkin, and G. Tzanetakis, “Flexible

scheduling for dataflow audio processing,” in Proc. Int.

Computer Music Conf, 2006.

[17] N. Halbwachs, Synchronous programming of reactive

systems. Springer, 1992.

[18] C. Elliott and P. Hudak, “Functional reactive anima-

tion,” ACM SIGPLAN Notices, vol. 32, no. 8, pp. 263–

273, 1997.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 331 -

