
Intelligent Exploration of Sound Spaces Using Decision

Trees and Evolutionary Approach

Gordan Kreković Davor Petrinović

Faculty of Electrical Engineering and Computing,

University of Zagreb, Croatia
gordan.krekovic@fer.hr

Faculty of Electrical Engineering and Computing,

University of Zagreb, Croatia
davor.petrinovic@fer.hr

ABSTRACT

This paper describes Synthbee, an assistive tool for sound

design which enables musicians to achieve desired

sounds without managing parameters of a sound synthe-

sizer manually. The system allows musicians to specify

desired sound characteristics using attributes and explore

the space of producible sounds by controlling the interac-

tive evolutionary algorithm extended to take into account

specified attributes. Using the interactive evolutionary

approach, musicians can recombine and mutate patches

towards a satisfactory result. While performing recombi-

nation of patches, the algorithm tries to maintain values

of synthesis parameters which are relevant for achieving

desired sound characteristics. Synthbee thereby enables

efficient creation of novel sounds which possess charac-

teristics described by input attributes. The method for

finding and maintaining relevant synthesis parameters

during an interactive exploration is our original algorithm

which uniquely combines machine learning techniques

with evolutionary computing. The results of the initial

subjective evaluation of Synthbee showed that the users

were generally satisfied with generated sounds, but also

indicated some opportunities for improvement.

1. INTRODUCTION

Modern sound synthesis technology opens innumerable

possibilities for creating desired sonorities. Musicians

have detailed control over the synthesis process what

gives them freedom to be more innovative and ambitious

expressing their ideas. To provide such a level of flexibil-

ity, most commercial software synthesizers have complex

architectures and offer a large number of controllable

parameters. As a result, the task of sound synthesis be-

comes difficult and time consuming what negatively af-

fects inspiration and productivity of musicians. One ap-

proach to overcome this problem is to use artificial intel-

ligence techniques for automatic selection of synthesis

parameters based on musician's requirements or guidance

[1].

Since last few decades, this problem was addressed in

many previous studies. Several authors focused on using

timbral attributes for controlling a sound synthesizer.

Based on specified attributes, the goal was to automati-

cally find appropriate synthesis parameters which pro-

duce a sound with described characteristics [2-5]. For

example, a musician could specify that the sound is ex-

pected to be metallic, bright, and harsh, while the system

should synthesize such a sound. Controlling a sound syn-

thesizer using timbral attributes is a challenging problem

for two reasons. The first one is a lack of theoretical and

notational support related to timbre [6]. While other char-

acteristics such as pitch and rhythm have more formal

notations, timbral attributes are not standardized. The

second reason is complexity and ambiguity of mapping

between verbal descriptions and synthesis parameters.

Existing works include several attempts at synthesizing

sound specified by timbral attributes. Miranda used a

machine learning algorithm based on decisions trees to

induce relations between quasi-timbral attributes and syn-

thesis parameters [2]. A research conducted by Goun-

aropoulos and Johnson employed a neural network to

learn relations between adjectives and audio features of a

sound characterized by those adjectives [3]. For generat-

ing synthesis parameters based on given adjectives, they

used a modified version of the backward-propagation

algorithm on the same neural network.

Besides using timbral attributes, there are other ap-

proaches to generating desired sounds. The most common

approach is target matching, i.e. finding the parameters

which produce the most similar sound to the given target

audio sample. Evolutionary computing techniques such

as genetic algorithms were employed to achieve target

matching for specific synthesis techniques [7-11].

Another notable approach is an interactive exploration

through a sound space of a certain synthesis process [12-

14]. The parameters are managed by a genetic algorithm

which takes musician's personal judgments as the fitness

measure. Using a rich graphical user interface, musicians

can control the evolutionary process to produce novel

patches in each iteration of the algorithm. The interaction

is intuitive, because it consists of browsing and rating the

patches.

Motivated by the mentioned publications, we have de-

signed and developed Synthbee, a system which intro-

duces a new way of employing artificial intelligence

techniques in sound design. Synthbee allows musicians to

specify characteristics of a target sound using textual de-

scriptions and perform a guided exploration of the sound

space towards a satisfactory result.

For each possible input attribute, the machine learning

algorithm is trained to determine which synthesis pa-

Copyright: © 2014 First author et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution License 3.0

Unported, which permits unrestricted use, distribution, and reproduction

in any medium, provided the original author and source are credited.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1263 -

rameters and their values which are relevant for that at-

tribute. The induced relations between input attributes

and synthesis parameters are later used in the interactive

evolutionary algorithm for narrowing the exploration

towards the target sound.

The interactive search starts from an initial set of exist-

ing patches allowing musicians to choose favorite patches

for genetic recombination. The reproduction process is

adapted to maintain parameters relevant for the given

input attributes. During the exploration process, novel

patches will be generated in every iteration, but their de-

sired characteristics described by input attributes will be

maintained. This is radically different from the basic ex-

ploration, because the musician can use textual descrip-

tions to direct the exploration process and reach the de-

sired sound more efficiently.

2. SYNTHBEE

2.1 System overview

The system consists of two modules which are independ-

ent of an underlying synthesis technique and can work

with patches for any synthesizer which supports the Vir-

tual Studio Technology (VST) standard. The term patch

stands for a sound setting which is represented by a vec-

tor of synthesis parameter values. The high-level archi-

tecture of Synthbee is shown in Figure 1.

Figure 1. The high-level architecture of Synthbee.

The purpose of the learning module is to detect rela-

tions between all available attributes and synthesis pa-

rameters. For each attribute, the module learns which

synthesis parameters are relevant and what values they

should have so that the synthesized sound fits that attrib-

ute. For example, if the sound is labeled as monophonic,

the parameter “unison” should have the value “on”.

However, relations are usually not as simple as in this

example, since most of parameters are continuous and

there can be several parameters relevant for one attribute.

In some cases it is even impossible to detect relevant pa-

rameters for certain attributes, because they can be used

inconsistently, or without a sufficient number of training

examples.

The exploration module recombines patches selected by

a musician to generate novel sounds. During that process,

the exploration module uses the knowledge induced by

the learning module to maintain relevant parameters dur-

ing the process of interactive evolution. As an additional

feature, the user can assign attributes to any new patch

and add it to the pool of learning examples in order to

increase the size of the training set and eventually im-

prove accuracy of the learning module.

2.2 Learning module

2.2.1 Attributes

The learning algorithm employed in Synthbee relies on

the simplified assumption that the attributes are inde-

pendent of each other. Miranda devoted a significant part

of his work to the problem of the layered organization of

attributes [2]. He pointed out that people tend to assemble

perceptual qualities of the sound in the more abstract

concepts. For example, one could associate the sound of

thunder with attributes such as loud amplitude, sharp at-

tack, noisy, low pitch, and medium duration. People are

prone to group this information and recall it simply as

thunder instead of listing all the attributes separately.

Whilst Miranda concentrated on relations within sets of

attributes, we focused on relations between attributes and

synthesis parameters. For that reason, Synthbee treats all

attributes without hierarchical relations and for each at-

tribute the system identifies relevant synthesis parameters

in the same way.

A patch description consists of an arbitrary number of

nominal attributes. A musician can simply list any attrib-

utes which he associates with the sound. For example, a

patch can be described with attributes like soft, mono-

phonic, metallic, slow release, and so on. Perceptual and

taxonomic descriptions are treated in the same way by the

learning module. In that sense, a musician can combine

perceptual attributes with those from a particular taxon-

omy (family of musical instruments, instruments names,

or sound effects category).

Such flexibility can cause difficulties for the learning

algorithm, because a musician can be inconsistent in de-

scribing sounds. As a solution to this problem, Synthbee

has an option to disable adding new attributes in the sys-

tem by users. In this mode, musicians can build input

descriptions by selecting attributes from the predefined

set. With dozens of attributes prepared in the system,

musicians still have an expressive vocabulary for forming

their requirements, but the results are expected to be sig-

nificantly better. Another benefit of this approach is that

musicians are able to share training sets among them by

using a common vocabulary.

2.2.2 Learning algorithm

In order to identify relevant synthesis parameters and

their values for each input attribute, the learning module

relies on principles of machine learning. For each attrib-

ute, the learning module creates a classifier which can

determine whether a given patch produces a sound which

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1264 -

suits that attribute or not. The purpose of classifiers in the

learning module is not to classify unknown patches, but

to reveal relations between the attribute and synthesis

parameters.

For example, a correctly trained classifier for the attrib-

ute monophonic employs the following classifying rules:

• if the parameter “unison” has the value “on”, the

sound is monophonic,

• if the parameter “unison” has the value “off”, the

sound is not monophonic.

Those rules are then used by the exploration module in

order to fetch relevant synthesis parameters and their

values. In this example only the “unison” parameter ap-

pears, because other parameters are not relevant for a

monophonic sound.

The intended purpose of the classification algorithm

imposes that classifying rules have to be expressed ex-

plicitly and based on relevant synthesis parameters. Time

efficiency is not of paramount importance, because the

learning module does not need to work in real time. Con-

sidering these aspects, decisions trees come as a reasona-

ble choice for such binary classifiers [15].

Decisions trees in Synthbee were designed so that in-

ternal nodes represent tests performed on synthesis pa-

rameters, branches represent possible outcomes, and leaf

nodes specify the overall classification result. As an in-

put, a decision tree accepts a patch which consists of syn-

thesis parameters ranging from 0 to 1 according to the

VST standard. An example of a decision tree built by the

learning module is shown in Figure 2.

Figure 2. The decision tree for the attribute synth lead.

The learning module induces decision trees using the

Classification and Regression Tree algorithm, CART

[16]. Selection of splitting values in internal nodes is

based on Gini index. The first step of the learning process

is the construction of complete trees without pruning.

Such trees can be too complex and over-fitted to training

samples. Therefore, they have to be optimized by cutting

off insignificant nodes and subtrees. This is done in the

second step by pruning based on 10-fold cross-validation.

The concrete implementation of the learning module in

the initial version of Synthbee relies on existing functions

from Matlab Statistics Toolbox.

A learning set for each tree is formed of all available

patches. In our case trees are binary classifiers, so learn-

ing samples must be labeled with either a positive or neg-

ative goal predicate. Namely, for each patch, there should

be the label “yes” if the patch satisfies the attribute for

which we are building the tree or the label “no” other-

wise. For that reason, patches containing that attribute in

their descriptions are labeled as positive samples, while

the others are considered as negative. For example, to

train a decision tree for the attribute synth lead, the

patches described with the synth lead attribute are taken

with the positive goal predicate, while the others with the

negative one. This example is shown in Figure 3.

Figure 3. A simple example of forming a training set.

2.3 Exploration module

2.3.1 Target description

The purpose of the exploration module is to recombine

patches selected by the user in a way that desired charac-

teristics given by input attributes are maintained in new

patches. When specifying attributes, the user can choose

among those for which decision trees have been built

successfully. As explained before, the learning algorithm

may not be able to build a decision tree for every attrib-

ute.

The exploration algorithm always uses the current input

attributes, so the target description can be changed at any

moment during the exploration. This way, musicians can

narrow or change direction of the exploration in every

iteration.

2.3.2 Exploration process

An exploration process consists of sequential reproduc-

tions and mutations following the basic principles of

genetic algorithms [17]. There is no automatic fitness

measurement, since musicians manually choose patches

for reproduction. The seed patches from the initial popu-

lation are chosen from the set of labeled patches so that

they meet the target description.

The unique feature of the exploration algorithm in

Synthbee is that relevant parameters and their values are

maintained in the reproduction process. In analogy to the

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1265 -

biological evolution, relevant parameters can be consid-

ered as dominant genes.

This extended exploration algorithm can be described

by the following steps:

1. generate two offspring using the standard genetic

recombination of selected parent patches,

2. optionally apply the mutation operator to the off-

spring to increase differentiation from the parent

patches,

3. check whether the offspring fit the input descrip-

tion; if not, take values of relevant parameters

from the parent that fits the description.

The third step is the most innovative part of this algo-

rithm and will be explained in more details later.

2.3.3 Reproduction types

A reproduction operator generates two offspring for a

couple of parent patches by recombining vectors of syn-

thesis parameters. The exploration module supports two

types of reproduction operators.

The first recombination type uses one crossover point

randomly selected somewhere within a patch using the

uniform probability distribution. The crossover point

splits the parent patches in two parts. The first child is

formed from the first part of the parent A and the second

part of the parent B. Similarly, the second child is formed

from the first part of the parent B and the second part of

the parent A as shown in Figure 4. This recombination

type preserves clusters of parameters and is expected to

provide more predictable results than the second recom-

bination type.

Figure 4. An example of genetic recombination which

uses the first type of reproduction technique.

The second recombination type uses two randomly cho-

sen crossover points which split the parents into three

parts. Initially, two offspring are produced as parent

clones. Parts before the first and after the second crosso-

ver point stay the same as in the parents, while each of

parameters between the crossover points is overwritten

by a corresponding parameter from the randomly selected

parent. The first child has the parameters of the parent A

before the first and after the second crossover point, but

has mixed parameters in between as shown in Figure 5.

The second has the parameters from the parent B where

the first child has the parameters from the parent A. In

other words, at this moment there is no parameter which

both of the offspring inherit from the same parent. This

recombination technique may disrupt clusters of parame-

ters and result with radically different and sometimes

inaudible or noisy sounds.

Figure 5. An example of genetic recombination which

uses the second type of reproduction technique.

2.3.4 Mutation

In the process of genetic recombination, the offspring

inherit parameters from parents. If new patches are not

added during the exploration process, the algorithm will

just recombine the same limited set of parameter values.

To introduce new genetic material, the mutation operator

can be applied to offspring patches. In Synthbee each

parameter is mutated by adding a Gaussian random vari-

able with zero mean and variance of 0.05.

2.3.5 Maintaining relevant parameters

The children patches generated by the standard recombi-

nation process might not fit the target description. In

such cases, the algorithm will make a correction by tak-

ing values of relevant parameters from the parent which

possesses appropriate values. For example, if the target

sound has to be monophonic, but the child patch inherit-

ed the unison parameter with the value “off” from the

polyphonic parent, this algorithm will check if the other

parent is monophonic and then take its value. The pur-

pose of the algorithm for maintaining relevant parame-

ters is to find a subset of parameters which should be

taken from the different parent so that the final patch fits

the target description.

This original method for correcting results of genetic

recombination relies on the knowledge induced by deci-

sion trees. Information about relevant parameters is

stored along paths which start with the root of the tree

and end with a positive leaf. Nodes on those paths repre-

sent conditions which a given patch needs to fulfill in

order to be classified positively according to that attrib-

utes. For the synth lead attribute shown in Figure 2, there

is only one positive path which contains conditions on

parameters p55 and p54. If the parameters of a given patch

fulfill those conditions, the patch is classified as a synth

lead.

Generally, there can be more than one positive leaf

node, so the algorithm has to consider all positive paths

when searching for relevant parameters in the decision

tree. For example, the decision tree for the attribute short

shown in Figure 6 has two positive leaves. To achieve the

attribute short, either the parameter p11 must be lower

than 0.0472, or the p11 must be equal or higher than that

value, while the p32 is lower than 0.0236.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1266 -

Figure 6. The decision tree for the attribute short.

In order to make appropriate corrections in offspring

patches, the algorithm needs to check all positive paths

and find the one which requires the minimal number of

corrections. A correction of a parameter means taking the

parameter value from the different parent. The more pa-

rameters are corrected in a child patch, the more it will be

similar to the other patch generated from the same par-

ents, because they will have more parameters with the

same values. In order to keep differentiation within the

offspring, the algorithm should change the minimal num-

ber of parameters, but still correct the patch to satisfy

input attributes.

To find the optimal set of corrections for the offspring

we designed a specific method which starts from a leaf

node and travels to the root counting needed corrections.

After all the positive paths are considered, it is known

whether the correction is possible and what parameter

values should be corrected in the offspring patch Po. This

method consists of the following steps:

1. set the current node to a leaf node,

2. set the number of replacements nr to zero,

3. if the current node is the root, finish the algorithm

and return the number nr,

4. read the condition from the branch which connects

the current node with its parent node,

5. check whether the patch Po fulfills that condition,

5.1. if the condition is fulfilled, go to the step 6,

5.2. if the condition is not fulfilled, check both of

the parent patches,

5.3. if one of the parents fulfills the condition,

remember its parameter, increase the number

of replacements nr by one and continue with

the step 6,

5.4. if none of the parents fulfills the condition,

set the number of replacements nr to infinity

and exit the algorithm,

6. set the parent node to be the new current node,

7. go to the step 3.

The result of running these steps from all leaf nodes will

be a number of replacements and a list of corrected pa-

rameters for each positive path. If the minimal number of

replacements is greater than the length of the longest pos-

itive path in the tree, it is not possible to fulfill the target

description by replacing certain parameters with those

from the different parent. That happens when none of the

parent patches has the desired characteristic.

When there are more viable positive paths, the algo-

rithm chooses the one with the smallest number of cor-

rections. Lists of corrections are memorized during the

algorithm for each positive path and the shortest list is

applied to the child patch.

This principle will be illustrated by a simple example.

The only input attribute in the target description for this

example is the attribute short. The first patch chosen for

reproduction has the parameters p11 = 0.0324 and

p32 = 0.8456, while the other one has p11 = 0.5186 and

p32 = 0.0000. Obviously, both of the patches match the

attribute short according to the decision tree for that at-

tribute (see Figure 6). After genetic recombination, a

child patch, for instance, inherits the parameter p11 from

the second parent and the parameter p32 from the first

parent. Such a patch does not fulfill the target description,

so the parameters have to be corrected. There are two

possibilities: to take p11 from the first parent, or to take

p32 from the second parent. The both possibilities require

one replacement, so they are equally acceptable. After

replacing the parameter value, the corrected patch will

satisfy the target description.

It is important to notice that this algorithm corrects

eventual damage done by mutation. In the mutation pro-

cess an eligibly inherited parameter can be changed, so it

should be set back to the original value. The algorithm

natively takes care of such cases, because both of the

parent patches are checked in the step 5.2.

2.3.6 Multiple attribute descriptions

The algorithm explained so far works for input descrip-

tions which consist of a single attribute. This section de-

scribes how the algorithm is extended to accept descrip-

tions formed of multiple attributes. The goal of this ex-

tension is to correct a patch so that it satisfies as many

attributes from the input description as possible, while the

number of corrected parameters is the secondary criteri-

on. The main principle of this extended algorithm is

based on generating corrections for each attribute sepa-

rately and then merging all the corrections.

In the first step, the offspring patches are corrected for

each attribute using the method described in the previous

section. However, instead of saving only patches with the

minimal number of corrections, the algorithm has been

modified to memorize all of the corrected patches. The

result is a set of corrected patches Ci for each attribute

from the input description.

In the second step, the algorithm chooses one patch

from each set Ci and forms the so-called merging set M.

All the patches from the merging set are then combined

so that the resulting patch satisfies as many attributes as

possible.

When forming the merging set M, the selection of

patches from the sets Ci is very important. In the merging

set there should the minimal number of patches for which

corrections have been performed on the same parameters.

The optimal situation is the one in which each candidate

has corrections of different parameters. In that case,

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1267 -

Figure 7. An example of forming a merging set and ap-

plying the corrections to the resulting patch. Parameters

with corrected values are marked with an X.

merging is very simple, since all corrected parameters

can be taken from their patches unambiguously. The re-

sulting patch will maintain all relevant parameter values

and satisfy all the input attributes. This situation is illus-

trated in Figure 7.

To achieve the minimal number of overlapping correc-

tions in the merging set M, before selecting patches from

the sets Ci, our algorithm checks all possible combina-

tions. The complexity of this operation is proportional to

the product of the cardinalities | Ci |. Those sets are not

expected to be large due to small decision trees, so time

efficiency should not be a problem. After checking all the

combinations, the algorithm chooses the one with mini-

mal overlapping of corrected parameters.

If the best combination still has patches whose correct-

ed parameters overlap, for each such parameter, the

Figure 8. An example of resolving overlaps in the

merging set.

algorithm fetches conditions from decision trees. Then it

tries to find a value which satisfies all conditions if possi-

ble. For example, if the parameter p62 must be greater

than 0.1 to satisfy the first attribute and smaller than 0.4

to satisfy the second attribute, the algorithm will take

some value between 0.1 and 0.4. This example is illus-

trated in Figure 8. If conditions are conflicting, the pa-

rameter will not be corrected and it will maintain the val-

ue obtained after the recombination and mutation.

3. EVALUATION

To ascertain the effectiveness of Synthbee in practical

tasks of sound design, we conducted a survey among six

amateur musicians. They were asked to grade how well

patches generated by the system matched the input at-

tributes and to which extent they differed from their par-

ents. Additionally, participants answered a set of general

questions about using attributes for controlling a sound

synthesizer. This chapter describes technical details of

the system setup and the evaluation procedure.

3.1 Synthesizer

For the evaluation purposes we used a subtractive VST

synthesizer consisted of: two oscillators, a white noise

generator, a low frequency oscillator, a filter with its en-

velope generator, an amplitude envelope generator, and a

delay effect. These elements have totally 69 controllable

parameters allowing users precise control over the syn-

thesized sound. The synthesizer comes with a wide varie-

ty of predefined patches covering sounds from strings,

leads, pads, and bells to electric percussions.

3.2 Attributes

Before the first use of Synthbee, we manually labeled 201

patches by assigning attributes to each of them. The at-

tributes were chosen from different taxonomies and had

different levels of abstraction. Some examples are: dark,

mellow, short, noisy, resonating, strings, aggressive, etc.

There were totally 27 different attributes used to describe

patches for the training set.

3.3 Learning module

After running the learning algorithm, 11 out of 27 deci-

sion trees were successfully created. The remaining trees

were reduced to the root by pruning, because each of

their attributes appeared in less than 10% of the training

samples, so there were too few positive samples to build

reliable classifiers.

The average accuracy for the 11 properly induced trees

was 90.88%. The accuracy was calculated using a 10-fold

cross-validation after the pruning. The average number of

nodes after pruning was 4.83, while the average height

was 1.83. In most cases it was sufficient to test just one or

two synthesis parameters to make a plausible decision

whether a patch satisfied the attribute or not. The list of

all attributes with properly induced decision trees is

shown in Table 1.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1268 -

Attribute N before pruning N after pruning Accuracy

Synth lead 21 5 91.04%

Delay 27 5 81.59%

Mono 15 3 94.03%

Synth bass 11 5 93.53%

Vibrato 19 3 88.55%

Slow variation 21 3 87.56%

Modulation 13 3 90.05%

Sequencer 3 3 100.00%

Deep 9 5 97.01%

No sustain 9 5 95.02%

Glide 11 7 95.02%

No velocity 25 11 77.14%

Table 1. This table enlists all the properly induced decision

trees with number of nodes before pruning, after pruning, and

the accuracy of the tree calculated using cross-validation.

3.4 Survey preparation

To create a set of patches for the survey, 20 pairs of par-

ent patches were randomly selected from the initial learn-

ing set. For each pair, we prepared a target description

which is expected to be satisfied by their offspring. Every

target description was intentionally composed only of

attributes selected from the union of the parents’ attrib-

utes. This way, we eliminated situations in which off-

spring cannot inherit parameters relevant for a desired

attribute. This setup also corresponds to the real scenario

of using Synthbee, since initial patches, which do not

match the target description, are automatically filtered out

at the beginning.

The average number of attributes in sound descriptions

was 2.5. After applying the reproduction algorithm with

recombination, mutation, and parameter correction on

parents, they generated 40 offspring which were used for

this survey.

In order to evaluate both of the recombination types

(explained in Chapter 2.3.3), the first half of the offspring

patches was reproduced using the first type of recombina-

tion with one crossover point, while the other half was

reproduced using the second type of recombination with

two crossover points.

For each of the 40 generated patches, participants were

asked to provide their subjective opinion on how well

does the patch fit the given attributes. Participants rated

patches using the scale with 5 available options ranging

from very poor (1) to very well (5). Additionally, for each

patch, participants were asked to assess how different the

patch is from its parents using the scale ranging from

very similar (1) to very different (5).

At the end of the survey participants were informally

asked to answer these general questions regarding auto-

mation in sound design:

1. How clear were the given descriptions based on

attributes? (1 - very unclear, 5 - very clear)

2. According to your opinion, are descriptions based

on attributes intuitive for musicians? (1 – not in-

tuitive at all, 5 - very intuitive)

3. How helpful is the system for intelligent explora-

tion of sound spaces? (1 - very little, 5 - very

much)

4. RESULTS

The average grade for the questions concerning how well

the generated sounds met the given descriptions was 3.96

and the median grade was 4. These statistical values were

calculated taking into account answers from all six partic-

ipants for all 40 assessed sounds. There was no signifi-

cant correlation between grades and numbers of attributes

in descriptions. The average grade for the patches pro-

duced using the first recombination type was 3.92, while

the average grade for the patches produced by the second

recombination type was 4.01. Distribution of all these

grades is shown in Figure 9.

Figure 9. This chart shows how many times each grade

appeared in the answers from all participants. The dark-

er bars represent grades for the patches generated using

the first recombination type, while the lighter ones rep-

resent grades for patches generated using the second re-

combination type.

The average grade for the questions concerning differ-

ences between patches and the parents was 2.66. The

patches generated using the first recombination type were

averagely rated with higher grades (2.84) than the patches

generated using the second recombination type (2.51).

This means that the latter patches were unexpectedly rat-

ed as more similar to their parents.

The negative correlation of -0.38 was observed between

grades from the first and the second question. The patch-

es, which are more similar to their parents, match the

target description slightly better.

The average grades on last three questions were 3.37,

4.00, and 4.33 respectively for clarity of such descrip-

tions, intuitiveness of using attributes, and potential use-

fulness of our approach.

5. DISCUSSION

The results of the evaluation have shown that users are

generally satisfied with sounds generated by Synthbee.

An interesting finding is that the recombination with two

crossover points produces offspring which are more simi-

lar to parents than those produced by the recombination

with one crossover point. This is contrary from what we

expected and what was indicated in other papers [12].

Apparently, for this particular sound synthesizer, there

are no many clusters of interdependent parameters, so

mixing adjacent parameters from different parents did not

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1269 -

seriously affect the synthesized sound. Using this recom-

bination type, each offspring inherits more parameters

from one parent what turned out to be more important for

similarity then maintaining clusters of parameters togeth-

er.

Another important finding is that the free choice of at-

tributes for labeling training samples and creating target

descriptions may have a negative consequence. In our

case, only 11 of 27 attributes resulted with a properly

built decision trees. A few metonyms appeared in the

learning set, and for several attributes there was insuffi-

cient number of positive training samples. We believe

that using a carefully predefined set of available attributes

could lead musicians to use them more consistently and

with better understanding of their meanings. At the same

time we do not expect that limiting the vocabulary would

seriously affect its expressiveness.

The answers on the last three questions in the survey

suggest that the problem of synthesizing sounds using

attributes and interactive exploration is relevant and in-

teresting for musicians.

6. CONCLUSIONS

The results of this study indicate that this unique combi-

nation of machine learning and interactive evolutionary

techniques may yield some valuable tools for sound de-

sign. Using descriptions of desired sound characteristics,

musicians could direct the exploration of sounds and

make it more efficient.

In the context of interactive evolutionary techniques

applied to practical tasks, it is important to balance be-

tween introducing diversity among suggested results and

maintaining the desired characteristics. This is generally

difficult to achieve, since our research showed a negative

correlation between these two aspects. However, by tun-

ing parameters of the algorithm and employing the ap-

propriate recombination method, we believe that the algo-

rithm can be adapted for a specific application.

The overall results are encouraging and indicate that

combinations of machine learning and evolutionary tech-

nique could open a new direction in automation of sound

design tasks.

7. REFERENCES

[1] E. Miranda, Computer Sound Design: Synthesis

Techniques and Programming, second edition, Focal

Press, Oxford, UK, 2002.

[2] E. Miranda, “An artificial intelligence approach to

sound design”, Computer Music Journal, The MIT

Press, vol. 19, no. 2, pp. 59-75, 1995.

[3] A. Gounaropoulos, C. Johnson, “Synthesizing

timbres and timbre changes from

adjectives/adverbs” in P. Collet et al. Applications

of Evolutionary Computing, Springer-Verlag, Berlin,

2006.

[4] R. Ethington and B. Punch, “SeaWave: a system for

musical timbre description”, Computer Music

Journal, vol. 18, no. 1, pp. 30-39, 1994.

[5] A. Pošćić, G. Kreković, “Controlling a sound

synthesizer using timbral attributes”, In Proceedings

of the International Computer Music Conference,

Stockholm, Sweden, 2013.

[6] T. Wishart, On Sonic Art. Taylor & Francis Group,

1996.

[7] A. Horner, J. Beauchamp, L. Haken, “Genetic

Algorithms and Their Application to FM, Matching

Synthesis”, Computer Music Journal, vol. 17, no. 4,

pp. 17–29, 1993.

[8] A. Horner, “Envelope matching with genetic

algorithms”, Journal of New Music Research, vol.

24, no. 4, pp. 318–34, 1995.

[9] J. Riionheimo, “Parameter Estimation of a Plucked

String Synthesis Model via the Genetic Algorithm”,

MSc Thesis, Helsinki University of Technology,

Finland, 2004.

[10] M. Chinen, N. Osaka, “Genesynth: Noise band-

based genetic algorithm analysis/synthesis

framework”, Proceedings of the International

Computer Music Conference, Copenhagen,

Denmark, 2007.

[11] M. J. Yee-King, M. Roth, “SynthBot – An

Unsupervised Software Synthesizer Programmer”,

Proceedings of the International Computer Music

Conference, Belfast, N. Ireland, 2008.

[12] J. Mandelis, “Genophone: An Evolutionary

Approach to Sound Synthesis and Performance”,

Proceedings of the Artificial Life Models for

Musical Applications Workshop, Prague, Czech

Republic, 2001.

[13] C. Johnson, “Exploring the Sound-Space of

Synthesis Algorithms Using Interactive Genetic

Algorithms”, Proceedings of the AISB Workshop on

Artificial Intelligence and Musical Creativity, 1999.

[14] J. McDermott, Evolutionary computation applied to

the control of sound synthesis, PhD thesis,

University of Limerick, Ireland, 2008

[15] S. Russell, P. Norvig, Artificial Intelligence: A

Modern Approach, Prentice Hall, New Jersey, 2003.

[16] L. Breiman, J. Friedman, R. Olshen, C. Stone,

Classification and Regression Trees, CRC Press,

Boca Raton, 1984.

[17] D. E. Goldberg, Genetic Algorithms in search,

optimization and machine learning, Addison-

Wesley, Reading, Massachusetts, 1989.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1270 -

