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ABSTRACT

A cross-lingual voice conversion system aims at modifying

the timbral structure of recorded sentences from a source

speaker, in order to obtain processed sentences which are

perceived as the same sentences uttered by a target speaker.

This work presents the cross-lingual voice conversion prob-

lem as a network of related sub-problems and discuss sev-

eral techniques for solving each of these sub-problems, in

the context of a modular implementation that facilitates

comparisons between competing techniques. The imple-

mented system aims at high-quality cross-lingual voice con-

version in a text-independent setting, i.e. where the train-

ing sets of sentences recorded by source and target speak-

ers are not the same. New strategies are introduced, such as

artificial phonetic maps, N -likelihood clustering and nor-

malized frequency warping, which are evaluated through

numerical experiments.

1. INTRODUCTION

Voice conversion refers to the process of manipulation of

acoustic parameters that transform sentences uttered by a

source speaker into sentences that sound as if having been

uttered by a target speaker, according to the original for-

mulation of the problem by Childers et al. in 1985 [1]. The

cross-lingual variant of the problem considers that source

and target speakers are not required to speak the same lan-

guage.

Among the applications of cross-lingual voice conversion

a few are prominent, such as the personification of inter-

active systems with speech synthesis from text, so called

Text-To-Speech Systems (TTS) [2] and personalized virtual

interpreter systems [3, 4], which usually require subsys-

tems for speech recognition, text translation and speech

synthesis, possibly coupled with voice conversion.

A voice conversion system takes into account the tim-

bre and prosody of the source and target speakers. These

are easily recognizable perceptual aspects of speech which

present difficulties in terms of definition and formaliza-

tion in general terms. But in the specific context of voice

conversion, timbre is usually considered in terms of the

dynamic spectral envelope of the voice signal, whereas
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prosody is reduced to energy and melodic contours and

rhythmic patterns of phonemes [5, 6, 7, 8].

Timbre and prosody transformations in a voice conver-

sion system usually depend on a training stage, which may

be text-dependent or text-independent. In the text-depen-

dent setting source and target speakers are required to re-

cord the same sentences, which are time-aligned and cor-

responding segments are matched to create mappings from

source to target acoustic parameter spaces. In the text-

independent setting [9] the sentences uttered by source and

target speakers are not necessarily the same; segments are

mapped into an acoustical feature space and clustered ac-

cording to artificial phonetic classes, which may or may

not coincide with conventional phonetic classes of the cor-

responding language.

Artificial phonetic classes are one of the fundamental con-

structs that characterizes the representation of a speaker’s

identity within a voice conversion system, the so-called

corpus of that speaker. Acoustic parameters of source sen-

tences are then mapped to an artificial phonetic class before

being transformed to a corresponding (artificial) phonetic

class in the target acoustic feature space. The corpora of

source and target speakers are then used to build a mapping

between the acoustic feature spaces that allow the conver-

sion of the meta-representations corresponding to artificial

phonetic classes, which are ultimately used to render voice

segments with the timbral and prosody qualities extracted

from the corpus of the target speaker.

A distinctive aspect of voice conversion systems is related

to the phonetic content of the languages used in the train-

ing and conversion stages. Cross-lingual voice conver-

sion techniques usually presuppose that source and target

speakers use different languages; although this is not a re-

quirement, it guides the development of techniques that do

not explore coincidences of the artificial phonetic classes

obtained from source and target speakers. The central point

of this work consists in performing a genuine conversion

where each speaker uses her/his own language, in which

case training is inevitably text-independent. It is important

to emphasize that no kind of symbolic-textual processing

(e.g. translation) is carried out in this type of conversion,

which instead takes place entirely within the acoustic fea-

ture spaces, classes and clusters of speech segments that

characterize both speakers.

Section 2 presents a short theoretical framework that un-

derlies the main contributions of this work, which are in

turn presented in Section 3, along with the complete cross-

lingual voice conversion system. Experimental evaluation

is reported in Section 4, and conclusions and further work

Proceedings ICMC|SMC|2014          14-20 September 2014, Athens, Greece

- 1312 -

mailto:dandy@ime.usp.br
mailto:mqz@ime.usp.br
http://creativecommons.org/licenses/by/3.0/


are delineated in Section 5.

2. THE FRAMEWORK OF THE SYSTEM

The success in the development of a cross-lingual voice

conversion system depends intrinsically on the choice of

reliable tools for the specific sub-tasks that comprise the

conversion process.

Figure 1. Functional modules comprising the voice con-

version system.

Figure 1 exhibits a general diagram, in which data flows

for both speakers are identified. The upper lines start with

the flow of sentences uttered by a source speaker (silhou-

ette at the upper-left corner) and the lower line starts with

target speaker (lower-left corner silhouette) sentences. Cen-

tral and lower lines correspond to a training stage, fed by

both speakers, whereas the upper line represents the con-

version stage, where the input is formed only by sentences

of the source speaker; the converted sentences (i.e. with

message content of the source speaker and timbral identity

of the target speaker) are produced at the upper-right end

of the diagram. Sub-tasks are denoted by capital letters,

according to the functional module, as follows:

A The Analysis module takes a recorded sentence, di-

vides it in short quasi-stationary segments and builds a rep-

resentation of each segment according to a voice produc-

tion model;

P The Parameterization module is responsible for mod-

elling and quantization of the acoustic parameters;

C The Clustering module is responsible for organizing

the corpus of each speaker into acoustic classes, i.e. mod-

elling the acoustic feature space corresponding to each spea-

ker;

M The Mapping module associates acoustic classes be-

tween speakers, using optimized alignment techniques;

T The Transformation module contains the acoustic pa-

rameter conversion functions, estimated from the align-

ment of acoustic classes;

P–1 The inverse Parameterization module readapts trans-

formed (quantized) acoustic parameters to the analysis /

synthesis model adopted; and

S The Synthesis module assembles the output signal in-

corporating the transformed acoustic parameters.

These functional modules comprise the two-stage voice

conversion system. The lower part of Figure 1 shows the

sequences A →P →C →M →T for both speakers, cor-

responding to the training stage, whereas the upper part,

whose sequence corresponds to A →P →T →P–1 →S, is

the conversion stage. These modules are discussed in the

sequel.

Conceptually, one may interpret the recorded voice sig-

nal as the result of an excitation source, the glottal pulse,

which is modified by the vocal tract; this interpretation ap-

plies only to voiced sounds, e.g. vowels, whereas unvoiced

sounds must be considered separately. Under a linearity

hypothesis, the vocal tract is modelled as a filter whose

transfer function modifies the spectral content of the glot-

tal pulse. The harmonic part of this spectrum is modelled

as a train of pulses with corresponding amplitudes; usually

a stochastic component is added to the model in order to

simulate the effect of the air column which freely traverses

the phonatory system.

The vocal tract filter may be represented with few co-

efficients, which will describe the profile of the filter re-

sponse or the spectral envelope of each quasi-stationary

segment. Thus it is possible to characterize both harmonic

and stochastic components through their respective spec-

tral envelopes in acoustic feature vectors, for ulterior para-

metric modelling and transformation. Spectral envelopes

may be obtained through LPC coefficients [10], Cepstrum

coefficients [11] and interpolation methods [12]. The

STRAIGHT [13] technique also uses a glottal pulse/vocal

tract model, allowing manipulation of parameters such as

the spectral envelope, pitch and other acoustic parameters.

Given a representation of voice segments through acous-

tic feature vectors immersed in an acoustic feature space,

similar voice segments are clustered around a representa-

tive (usually the centroid of a set of similar vectors) to de-

fine an Artificial Phonetic Class (or APC for short). Two

classes of clustering techniques are of widespread appear-

ance in voice conversion literature: cognitive network meth-

ods and statistical methods, more prominently Gaussian

Mixture Models or GMMs [14] which are considered state-

of-the-art in voice conversion. A new clustering approach

is introduced here, which normalizes classes in order to

eliminate discrepancies between APCs of different langua-

ges.

A model of acoustic mapping between APCs is essential

for the transformation module. The alignment of APCs of

different speakers is based on the assumption that transpo-

sition of phonetic characteristics is performed locally, on

the voice segment level, without taking the phonetic con-

text of adjacent segments into account; naturally this as-

sumption applies specifically to the APC alignment prob-

lem, not to the whole conversion process. A solution to

APC alignment is proposed here which adapts a classical

graph-theoretical algorithm for minimal cost graph node

matching [15].

The alignment uses APC representatives from both speak-

ers, from which transfer functions are derived (in the train-

ing stage). These transfer functions are used in the conver-

sion stage to transform acoustic parameters of a segment

belonging to an APC of the source speaker to acoustic pa-

rameters that correspond to a matched APC in the target

speaker model. These parameters, now in the context of

the target speaker acoustic feature space, are synthesized

in the last module into a voice segment that will compose

the converted sentence.

The technical aspects of these modules are detailed in the
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following section.

3. NEW TOOLS FOR VOICE CONVERSION

According to the structure of the system, the Analysis and

Synthesis modules correspond to the first stage, which

should provide a sensible representation for voice segments

(analysis) that will allow a truthful reconstruction of the

converted voice signal (synthesis).

3.1 Module I: Harmonic-Stochastic Modelling (HSM)

The Harmonic+Noise model proposed by Stylianou [16]

is a flexible model that offers a representation framework

for high-fidelity voice reconstruction. It is efficient and

transparent, representing harmonic and stochastic compo-

nents, which simplifies manipulation and transformation

of voice segments. The harmonic components correspond

to a quasi-periodic portion of the signal, and are repre-

sented through individual frequencies, amplitudes and ini-

tial phases of sinusoidal oscillators. The stochastic compo-

nent corresponds to the rest of the signal with essentially

aperiodic behaviour, and is modelled as a source-filter sys-

tem with white noise as source and LPC coefficients to de-

fine the spectral envelope of the filter.

There are several models for speech synthesis which com-

pletely discard all phase information and try to rebuild

phases a posteriori from the magnitude spectrum alone, us-

ing spectral modelling under the hypothesis of minimum

phase [17]. Instead of discarding phase information, an

alternative representation for the phases of the harmonic

components is here introduced, in order to provide for a

more robust transformation which is less prone to phase

distortion. Consider the harmonic part sh obtained from

the HSM decomposition with L+1 sinusoidal components

of an arbitrary voice segment, indexed as k, of lengthN+1
(N even) and with samples n indexed from −N

2 to +N
2 and

sampling frequency R:

s
(k)
h [n] =

L
∑

m=0

Ak
m cos

(

2πmfk0 n

R
+ ϕk

m

)

; (1)

it is considered that the central samples of each segment

are N
2 samples apart from each other. The overlap rate is

N

2

N+1 , slightly less than 50%.

The phase ϕk
m of the m-th harmonic component in Equa-

tion (1) refers to the sample n = 0 at the center of the

segment, and can be seen as a sum of two components,

the first that corresponds to the predicted phase propagated

from segment k−1, and a second component that accounts

for the difference between this prediction and the actual

phase obtained in the analysis of segment k:

ϕk
m =

(

ϕk−1
m +

2πmfk−1
0

N
2

R

)

+ ηkm. (2)

This ηkm is actually defined by the above equation, and will

be used to redefine the frequencies of the model in a man-

ner similar to the well-known phase vocoder method.

Rewriting fk−1
m = mfk−1

0 and refactoring,

ϕk
m = ϕk−1

m +
2π
(

fk−1
m +

Rηk

m

πN

)

N
2

R
(3)

which corresponds to

ϕk
m = ϕk−1

m +
2πf̂k−1

m
N
2

R
, (4)

where

f̂k−1
m = fk−1

m +
Rηkm
πN

. (5)

This process uses information obtained from the HSM

model of segment k to redefine the frequencies of segment

k − 1, and as a consequence the phases for segment k be-

come unnecessary, since they can be recovered from the

phases of segment k − 1 by Equation (4). By iterating this

mechanism, only the initial phases are required to recon-

struct the whole sequence of segments corresponding to a

single voiced emission. The reconstruction based on the

above recodification is thus

ŝkh[n] =
L
∑

m=0

Ak
m cos

(

2πf̂kmn

R
+ ϕk

m

)

, (6)

which is evidently different from the original segment, but

nevertheless of enormous utility in this context, because it

has no phase discontinuities between overlapped segments.

This representation might be used to reconstruct a percep-

tually similar signal, but most importantly it allows several

transformations of the signal, such as pitch shift and time

stretch, to be performed easily.

The recurrence relation involving phases and re-estimated

frequencies poses an initial value problem: in principle, the

first segment k = 0 could be represented explicitly through

the phases ϕ0
m of the HSM analysis; but since phases are

going to be propagated according to the sequence of re-

estimated frequencies, it is reasonable to drop the initial

phases for the first segment, and use ϕ0
m = 0 in the recon-

struction.

It should be noted that this recodification takes this model

away from the original HSM premises, because the re-

estimated frequencies {f̂km, m = 1, . . . , L} are no longer

guaranteed to be in harmonic relation. Instead, the model

becomes a mixture of the additive synthesis and stochastic

models. It should also be noted that in pitch-shifted seg-

ments phase coherency between inharmonic components

is lost, but the resulting artifacts can be masked in the

overlap-add reconstruction.

3.2 Module II: Parametric Decomposition

The Parameterization module normalizes the acoustic pa-

rameters using a fixed number of coefficients in order to

characterize segments, creating a correspondence of val-

ues that allows the direct comparison of segments within a

normalized feature space.

The central idea of this module is to provide two log-

magnitude spectral envelopes, the harmonic and stochastic
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spectral envelopes, and decompose them into sums of ra-

dial basis functions (bandpass filters) with flexible shapes

and bandwidths. Such spectral envelopes can be easily

estimated using classical methods such as LPC and Cep-

strum, among others [10], and the radial basis functions

decomposition follows the strategy presented in [12], by

constructing sub-bands Ek and initializing basis parame-

ters conveniently.

The sum of L general parametric functions is denoted by

Ê(f ; a, µ, σ) =
L
∑

m=1

ψ(f ; am, µm, σm) (7)

where each component ψ(f ; am, µm, σm) : ℜ −→ ℜ cor-

responds to a continuous basis function with amplitude

am, central frequency µm and bandwidth σm, evaluated

in the frequency range f = [0, R/2].
The problem of radial basis function modelling is to find

an approximation Ê(f ; a, µ, σ) of a discrete functionE(f)
such that the error of estimation is minimal. The fitting of

the given function E(f) to the parametric model

Ê(f ; a, µ, σ) ≈ E(f) could in principle be obtained by

any iterative optimization method (e.g. gradient descent

or Newton) to obtain the least-squares solution that mini-

mizes the error of the model. Other methods for parametric

decomposition can also be found in the literature [18, 12].

3.3 Module III: Data Clusterization

The Clusterization module groups segments according to

similarity in the acoustic feature space, which will later de-

fine the artificial acoustic classes in the phonetic map of the

speaker corpus. First, acoustic vectors with harmonic com-

ponent amplitudes are quantized and then grouped, based

on a likelihood criterion, for further analysis.

3.3.1 N -likelihood clustering

The N -likelihood clusterization method introduced here

groups vectors in an acoustic feature space in clusters with

N elements (typically between 5 and 10, depending on

window length). Each of these clusters is obtained by mini-

mizing the dispersion of a vector set, measured as the norm

of the diagonal of the covariance matrix of the vector set.

For each segment k with an harmonic amplitude vector

Ak, a temporally-smoothed version vk is defined as

vk =

[

1

4
Ak−1 +

1

2
Ak +

1

4
Ak+1

]

. (8)

Then for each pair (vm, vn) a similarity matrix E is built

using the euclidean distance E(m,n) = ‖vm − vn‖, and

for each line m of this matrix the indices of the N smaller

values are selected in a sub-matrix J in such a way that

J(m, 1 . . . N) are theN smallest indices in {E(m,n), ∀n}.

Then a selection structure K(m) is defined as

K(m) = ‖diag (Cov{vk | k ∈ J(m, 1 . . . N)})‖ . (9)

In its final stage the clusterization algorithm loops through

the selection structure K searching for the index m∗ with

the smallest value, in order to define an N -likelihood clus-

ter as the set υ = {vi | i ∈ I} where I = {J(m∗, 1 . . . N)}.

Then all indices i ∈ I are removed from the selection

structure K (e.g. set K(i) = +∞, ∀i ∈ I). This pro-

cess is repeated until the selection structure is emptied (e.g

K(i) = +∞, ∀i). After that, an optional filtering is per-

formed to eliminate clusters with a relatively high disper-

sion measure.

3.3.2 Artificial Phonetic Map

In order to establish a starting point for the clusterization

of voiced segments in artificial phonetic classes, the use of

a discrete polygon which simulates a phonetic map is here

proposed. This polygon is a trapeze where each point cor-

responds to a pair of formantic centers (f1, f2), obtained

from a (mel-frequency) spectral envelope ck correspond-

ing to a centroid of an N -likelihood cluster υk.

The process of estimation of each point, or formantic

center, (f1, f2) in the artificial phonetic map from a cen-

troid ck considers several possible candidates (f̂1, f̂2) with

f̂1 ≤ f̂2, f̂1 ∈ F1 = {f̂11 , f̂
2
1 , . . . , f̂

r
1 } and f̂2 ∈ F2 =

{f̂12 , f̂
2
2 , . . . , f̂

r
2 }. For any candidate f̂ a triangular band-

pass filter ξf̂ is built, with center f̂ and a bandwidth rang-

ing from 300 mels to 1800 mels, adjusted so as to not over-

lap neighbouring formantic centers in the spectrum. After

filtering (as c̃f̂k = ctk ∗ ξf̂ ) the centroid ck through all can-

didate filters ξf̂ with f̂ ∈ F1 ∪ F2, the two spectra c̃
f∗

1

k and

c̃
f∗

2

k with maximum total cumulative energy are selected.

The pair of formants (f∗1 , f
∗
2 ) thus built is the phonetic

map entry that corresponds to the N -likelihood cluster υk.

The phonetic map can be seen as a kind of hash table in-

dexed by (f∗1 , f
∗
2 ), giving access to all the acoustic vec-

tors v ∈ υk belonging to the same N -likelihood cluster.

This grouping of acoustic vectors v ∈ υk indexed by a pair

(f∗1 , f
∗
2 ) corresponds to an artificial phonetic class (APC),

which will be denoted by C(f∗1 , f
∗
2 ). For each APC, the

means and covariance matrices of the elements that com-

pose each set are obtained, which will be used in the trans-

formation module.

3.4 Module IV: Alignment of Non-Parallel Corpora

The goal of this module is to create a canonical and unified

representation for both source and target corpora, in a way

that an alignment between them is established even in the

case of distinct languages. A normalization of the phonetic

maps is realized in order to diminish the linguistic differ-

ences of the speakers, by warping the acoustic map around

the origin and with a normalized dispersion in all direc-

tions. To weigh the contributions of each class C(f1, f2)
the cardinality |C(f1, f2)| is considered; classes C(f1, f2)
with few elements are excluded from the phonetic map.

Given two sets of artificial phonetic classes (or phonetic

maps) from corpora CX and CY represented by the respec-

tive sets of normalized switches C̄
X and C̄

Y , it would be

convenient to try to define a bijection mappingM : C̄X →
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C̄
Y as

M(xi) = arg min
yi∈C̄Y







∑

xi∈C̄X

d(xi, yi)







, (10)

where d corresponds to the euclidean distance. But an im-

portant issue in the alignment of corpora is the fact that

the cardinalities of the sets C̄
X and C̄

Y are typically dif-

ferent, making it impossible to define such a bijection. To

resolve this issue, the largest of the two sets will be shrunk

in order to force a correspondence between the remaining

classes of the two corpora. This reduction is performed at

the end of the pairing algorithm, when all unpaired classes

are excluded from the database.

The Optimal Acoustic Mapping Problem between pho-

netic classes C̄X and C̄
Y is then reduced to the Minimum

Cost Perfect Matching Problem in bipartite graphs. Two

vertices xi and yj are paired in the acoustic mapping if,

and only if, the edge ai,j belongs to the perfect matching.

This problem can be efficiently solved by the classical al-

gorithm of Hopcroft and Karp [15] in time O(|E|
√

|V |)
where V and E are the sets of vertices and edges, respec-

tively.

Figure 2. The perfect matching method applied to the

alignment of parallel sentences.

Figure 2 illustrates the result of matching between two

different corpora using a color code for aligned data. Given

a sentence uttered by speaker #1, the correspondence be-

tween the classes of corpus #1 and corpus #2 (with the

same color) allow the definition of a (piecewise) linear

mapping function that warps the spectral contents of the

sentence to adjust it to the map #2. Using the above align-

ment, a new technique of transformation of acoustic pa-

rameters is presented in the sequel.

3.5 Module V: Transformation of the Acoustic

Parameters

Two types of transformations are defined at this stage: (1) a

global transformation which corresponds to a linear trans-

form based on means and variances of global prosodic pa-

rameters; and (2) a local transformation for the spectral

conversion of each input segment using a mapping between

the artificial phonetic classes developed in the prior mod-

ule. Prosody conversion transposes pitch (F0) and energy

(E0) contours of the harmonic components, and pure en-

ergy contours of the stochastic components, into corre-

sponding values obtained from the pitch and energy mod-

els of the target corpus. Local spectral conversion applies

only to harmonic components, and reshape spectral content

of input segments, conforming them to the target’s pho-

netic map.

Each input segment is dynamically associated to a set of

probable APCs CX
j in the source corpus CX through a per-

tinence criterion applied to the harmonic components in

this segment’s representation. The composition of weight-

ed local transformation is commonly used in GMM-based

linear transformations, since it avoids discontinuity when

a sequence of segments transits between APCs [19]. Let

C
Y
i = M(CX

i ) be an APC in the target corpus CY corre-

sponding to the APC C
X
i in the source corpus CX . The

local (segment-wise) transformation uses the means and

covariance matrices of the corresponding APCs in order

to build a segment in the target acoustic vector space.

The pertinence criterion adopted is based on the mel-

cepstral distortion [20]; i.e. the pertinence of vector vk
with respect to centroid c of class CX is defined as

d(v, c) = 1−
‖dct[v]− dct[c]‖

∑

∀ck∈C̄X ‖dct[v]− dct[ck]‖
, (11)

where dct is the well known Discrete Cosine Transform.

Then a set of m probable APCs ci, i ∈ [1,m] with highest

pertinence values d(v, ci) is taken. The weighted transfor-

mation is defined as

v̂ =

∑m
i=1 d(v, ci)Tloc(v, ci,M(ci))

∑m
i=1 d(v, ci)

, (12)

where Tloc is a chosen segment conversion function andM
is the mapping between phonetic maps obtained in mod-

ule IV. One example of a segment conversion function is

the linear transform using full covariance matrices of each

APC involved, defined as

T LT
loc (v, c,M(c)) = µM(c)+Σ0.5

M(c)(Σ
−0.5
c )(v−µc), (13)

where µc and Σc are the mean and covariance matrix of

the vectors in class c.
Another segment conversion function introduced here is

the Normalized Frequency Warping (NFW). The first step

in this method is obtaining Cumulative Distribution (CD)

functions of the (parametric) spectral envelope E(f) =
∑

∀k ψ(f, ak, µk, σk), ∀f ∈ [fmin, fmax] (of module II),

defined as

CDE(f) =

∑f
k=fmin

{E(k)} − E(fmin)
∑fmax

k=fmin
{E(k)} − E(fmin)

, (14)

where fmin and fmax are the minimum and maximum fre-

quencies considered in the parametric decomposition of

the spectral envelope. Then a Normalized Frequency Dis-

tribution (NFD) is obtained, which associates to each nor-

malized amplitude value e ∈ [0, 1] a frequency f in such a

way that

DFN(e) =

∑e
k=e0

CD(k)
∑e1

k=e0
CD(k)

(fmax − fmin) + fmin. (15)

Values between e0 and e1 are linearly-spaced amplitudes

between 0 and 1 according to the discretized version of the
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spectral envelope E. The Normalized Frequency Warp-

ing (NFW) then transforms a vector v into v̂ based on the

alignment of DFN values for source and target spectra rep-

resenting the phonetic classes ci and M(ci).
The NFW method is described through the following al-

gorithm:

1. The centroids ci and M(ci) of the APCs C
X
i and

C
Y
i = M(CX

i ) are used as input for the definition

of a local tranformation;

2. The DFNs DFNci(f) and DFNM(ci)(f) of ci and

M(ci) are obtained;

3. A warping patternNFW (v, ci,M(ci)) is defined as

the cubic splines interpolation of the pairs

(DFNci(f),DFNM(ci)(f)), for all (discretized) fre-

quencies in the input vector v;

Finally, the above warping is applied to the difference be-

tween the input vector v and the centroid ci, as

T NFW
loc (v, ci,M(ci)) =M(ci)+NFW (v − ci, ci,M(ci)) .

(16)

The voice conversion system containing the above strate-

gies has been subjected to objective and subjective experi-

mental evaluations, which are reported in the next section.

4. EXPERIMENTAL RESULTS

Two fundamental questions are related to voice conversion

evaluation: (1) timbre similarity between the target speaker

voice and the converted sentence; and (2) quality of the

transformed signal, comprising sound quality aspects such

as intelligibility and naturalness. This section includes an

objective and a subjective evaluation of these questions in

the proposed system.

This research has had the support of the Universitat Poly-

tècnica de Catalunia, which provided a database used in the

TC-STAR project [4]. Sentences in this database had been

recorded by several speakers using time cues to facilitate

alignment, and with a rigorous prosody control achieved

by imitation, i.e. each speaker had an example sentence

whose prosody should be reproduced as closely as pos-

sible. Furthermore, all recruited speakers were bilingual

(English and Spanish), providing for examples of each tim-

bral identity in both phonetic spaces.

Eight speaker corpora form the TC-STAR database, cat-

egorized by language and gender, for a total of 10 hours

of audio recorded sentences, sampled at 96 kHz and quan-

tized at 24 bits/sample, obtained in a nearly noise-free en-

vironment. Signals have been resampled at 16 kHz for

computational efficiency reasons. In order to put the pro-

posed system to test in a broader scenario with much fewer

training data available, a random selection of 50 sentences,

each approximately 5 seconds long, has been taken to com-

pose the experimental database in the following evaluation.

4.1 Objective Evaluation

In order to assess objectively the quality of the sentence ob-

tained from the system, a pair of input sentences is required

Figure 3. Average Spectral Distortion Rates: each joint

set of bars represent a language (EN or ES) and a gender

conversion scenario (F=Female, M=Male), and colors rep-

resent transformation methods.

as in text-dependent training. The converted sentence in

the real voice of the target speaker works as a ground-truth

sentence. This allows a direct comparison between the sen-

tence obtained from the system through voice conversion

and the expected result (ground-truth).

The TC-STAR database with its parallel set of sentences

in both languages is perfect for this type of evaluation.

Both converted and ground-truth sentences are time-aligned

and compared through a spectral distance measure applied

segment-wise. Alignment is obtained with the classical

Dynamic Time Warping (DTW) algorithm [10], adapted

to the HSM model.

The local (segment-wise) transformation function is con-

sidered to use one of the following methods: (1) Linear

transformation using the full covariance matrix (LT-Full);

(2) Linear transformation using only the diagonal of the

covariance matrix (LT-Diag); (3) Normalized Frequency

Warping (NFW) proposed in this work; or (4) Resynthesis

of the target signal through weighted reassembly of cen-

troids for the selected target corpus classes (Codebook, de-

scribed in reference [21]).

An experiment has been conducted using all the corpora

for English-speaking and Spanish-speaking speakers in TC-

STAR, which have been arranged to cover for all gender

combinations in intra-lingual voice conversion, namely

M×M ,M×F , F×M and F×F . It should be noted that,

although intra-lingual voice conversion is not the main fo-

cus of this work, it provides a controlled setting for assess-

ing voice conversion quality across genders, which is one

of the well-known issues in general voice conversion.

A set of histograms is shown in Figure 3, which presents

spectral distortion values between the converted signal and

the ground-truth signal, averaged over segments. The black

bars labelled “Original” refer to the spectral distortion be-

tween the aligned original source and ground-truth target

voice signals. It can be seen from this objective compar-

ison that there is no method that wins on every situation,

although either NFW or Codebook have achieved lowest

distortions in 75% of the scenarios.

Three of these methods have been chosen for the subjec-

tive evaluation to be presented in the sequel: NFW, LT-

Diag and Codebook; LT-Full has been left out because of

evident noisy artifacts produced, probably due to the re-

Proceedings ICMC|SMC|2014          14-20 September 2014, Athens, Greece

- 1317 -



MOS – Naturalness MOS – Similarity
Paired Sentences LT-DIAG NFW COD LT-DIAG NFW COD

F → F 3.8059 3.7411 1.8974 2.9645 3.0821 3.0411

F → M 2.3838 2.2332 1.4696 3.5733 3.6716 3.5932

M → M 3.3801 3.5123 1.9197 3.3441 3.6158 3.4370

M → F 2.9620 3.0545 1.6743 3.6674 3.7323 3.6029

Table 1. Results for the perceptual evaluation (MOS).

duced dataset in the training stage.

4.2 Subjective Evaluation

An online interactive system has been developed in or-

der to apply the required perceptual tests for the subjec-

tive evaluation of the cross-lingual voice conversion sys-

tem proposed. The Mean-Opinion Score (MOS) [3, 4] has

been adopted as a standard for measuring naturalness and

similarity of the converted voice signals. This experiment

had a participation of 50 volunteers.

An interview with each participant was composed by a

series of 16 rounds of questions each referring to particu-

lar set of paired sentences; presentation order has been ran-

domized. In each round the user was presented with three

versions of the converted sentence (through the NFW, LT-

Diag and Codebook techniques, in randomized order) and

the target sentence, rating converted sentences in a 5-value

scale from 5=excellent to 1=bad. All scenarios of cross-

lingual and cross-gender voice conversion were covered in

this experiment.

In order to gain a general view of the transformation meth-

ods, average MOS scores for naturalness and similarity

were taken, according to Table 1, for each gender-grouped

pair of corpora: F → F , F →M , M →M and M → F .

4.3 Discussion

The results corresponding to the objective and subjective

evaluations can be seen to agree in the comparison be-

tween the NFW and LT-Diag methods, in the sense that

NFW has obtained better objective and subjective scores

in the cases with a male source speaker (and any target);

in the cases with a female source speaker, the cross-gender

case F →M favoured LT-Diag in the objective evaluation,

whereas in the subjective evaluation MOS-Naturalness val-

ues favoured LT-Diag but MOS-Similarity values favoured

NFW for female source speakers. The Codebook tech-

nique appeared to be a serious competitor in the objective

evaluation, but scored low in the subjective evaluation with

respect to MOS-Naturalness values.

The difficulty of the particular case of female to male

voice conversion has been observed in many of the meth-

ods here considered, and also in other studies. Zorilă and

co-authors [22] believe that this phenomenon is related to

the difficulty of obtaining spectral envelopes for female

voices, due to the wider spacing between spectral harmonic

components. Although several alternative experiments

have been conducted in order to try to better understand

this phenomenon and tailor methods to this particular sit-

uation, no alternatives have been found that consistently

achieved higher scores in this voice conversion scenario.

The observed interactions between naturalness and sim-

ilarity in voice conversion are believed to correspond to a

competitive relationship, according to previous studies by

several authors [23, 24, 14]. The success in one metric is

supposed to be inversely tied to the success in the other,

making it unlikely for a method to be highly scored in

both metrics at the same time. This conflict is partially ex-

plained by the duality between over-fitting in the analysis

of sentence segments and over-smoothing of the transfor-

mation due to the contribution of many artificial phonetic

classes.

5. CONCLUSIONS

This paper presented a complete voice conversion system 1

with an orientation towards cross-lingual voice conversion.

The method presupposes a training stage which does not

depend on parallel-produced corpora, bilingual speakers

or labelled recordings. The system includes a set of tools

for analysis, spectral manipulation, clustering and classi-

fication of voice segments in terms of artificial phonetic

classes that could be also used independently for tasks other

than voice conversion.

Experimental results based on the TC-STAR dataset sug-

gest that these methods offer good alternatives for voice

conversion across different languages, even though the prob-

lem of achieving perfect voice conversion in perceptual

terms is still far from being completely understood, let

alone solved. Some of the difficulties in objective and sub-

jective evaluations have been presented, which hopefully

will shed some light on paths for extension and improve-

ment of the proposed methods in future work.

Among the improvements that are going to be explored,

a higher resolution in the quantization of acoustic vectors

and artificial phonetic maps should be considered in an at-

tempt to increase the quality of the conversion, as should

some more compact alternative to the phase configuration

in the representation of the initial phases of harmonic com-

ponents. Another important challenge is performing con-

version in real-time; many conversion modules are paral-

lelizable, such as the parameterization module which can

treat different frequency bands simultaneously. This sug-

gests the implementation of the voice conversion system

on parallel machines, such as GPGPU [25].
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