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ABSTRACT 

Sound is all about vibration, and the GENESIS environ-

ment provides an efficient way for modeling and simulat-

ing complex vibrating structures, enabling to produce rich 

sounds.  

In this paper, we propose an overview of tools recent-

ly developed and available within the GENESIS envi-

ronment, allowing a better understanding on how mass-

interaction networks behave and introducing some en-

hanced tuning of their vibrating properties. All these tools 

try to address an inherent need of any creative process 

either in the physical world or in GENESIS, which is to 

create bidirectional connections between properties of a 

phenomenon, in our case, audible sounds, and properties 

of what produced it, here, mass-interaction networks.  

For this purpose, we will introduce the topological 

and modal representations of such mass-interaction net-

works and appreciate how relevant it can be to switch 

between these different representations to really appre-

hend its inner properties and those of the sounds it pro-

duces.  

1. INTRODUCTION 

GENESIS [1] is a musician-oriented software environ-

ment for sound synthesis and musical composition. It 

implements the modular language CORDIS-ANIMA [2] 

that provides a set of primitive elements, modules satisfy-

ing Newtonian physics. 

The elementary bricks of CORDIS-ANIMA are dis-

tinguished in two categories: the <MAT> modules that 

designate “matter” being either moving or fixed and the 

<LIA> modules that designate interactions and allow 

interconnections between <MAT> modules. 

A GENESIS “topological” model is then constructed by 

connecting these modules to each other into a dedicated 

2D space called “the bench”, this by direct manipulation 

(Figure 1). Such a model will be defined by its “topolo-

gy”, meaning its network structuration, by the parameters 

of each one of the modules it is made of (M for inertia of 

MAT modules, K for stiffness, Z for damping for LIA 

modules), and finally by a set of initial conditions carried 

by MAT modules (position and/or velocity).  

Once built and parameterized, the model will be set in 

motion through an outer excitation, and its movement 

will be « listened to » (Figure 1). 

 

 

Figure 1. Mass-interaction network of a “string” (in-

deed, its geometry is quite unusual, but it does not mat-

ter. Its topology does). Yellow dots are moving 

<MAT>, green ones stay fixed. 

From there, one can build simple or very large mass-

interactions networks, composed with thousands of mod-

ules. Once simulated, these allow obtaining complex and 

rich sounds. But whatever the size of such models, when 

it comes to exploring the variety of sounds they are able 

to produce, or even to adjust their nature or structure with 

the aim of fine-tuning this sounds, a major problem aris-

es. Its widest formulation expressing a need to establish 

two-ways relations between causes and effects.  

There are several complementary ways to go on with 

such concerns.  

The first, empirical, is to build one’s own knowledge 

of how objects, models, behave according to how we act 

on or modify them. One will have to learn how slight 

adjustment of model parameters will alter perceptive 

properties of the product of its simulation. Furthermore, 

in the case of the GENESIS environment, it is now possi-

ble to physically experiment virtual models by means of 

haptic interfaces [3], which allow, by an additional ges-

tural feedback, a very direct and instrumental way to 

investigate the properties and possibilities of models in 

terms of musical creation. In both cases, a closed loop is 
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set that involves a model and its simulation, the percep-

tive outcomes of this simulation, and the adjustment of 

action or modification applied on this model. 

A second one is to get to have a better understanding 

of the model and the sound it produces by using dedicat-

ed analytic technics and tools. These can be derived and 

adapted from the physical world to the virtual world 

proposed by GENESIS, or having a more mathematical 

essence. In our case, we will have to understand the mat-

ter at its very smallest scale, so the properties of large 

objects made of this matter can be easily deducted. For 

that we will introduce in the following a complementary 

representation to the topological mass-interaction net-

works. Based on both representations, and by switching 

between them, we will present some tools now imple-

mented in the GENESIS environment and allowing to 

help users in their creative process. 

2. MODEL ANALYSIS 

Real objects, made out of real matter, and played as mu-

sical instruments are since quite recent times under the 

extensive survey of acoustic, fundamentally motivated in 

understanding how they produce sound [4]. But even if 

the mechanisms of some musical instruments are still 

nowadays freshly discovered, instrument-makers haven’t 

waited to develop tremendous know-how in their concep-

tion and neither have the musicians to learn how to play 

and to take the best out of them. 

Sound synthesis by the mean of mass-interaction net-

works modeling and simulation is one of a few methods 

that, before producing sounds, require to handle matter 

and to build complex objects out of it. A virtual matter 

for virtual objects, of course, but still existing in itself, 

answering to its own “physics” and that can be studied as 

it is. And it is precisely by having this objects that one 

can learn a lot about the sound that it might ultimately 

produce. This, by developing and using a dedicated 

“acoustic” of mass-interaction networks 

The concept is there to extract, directly by studying 

the properties of a model, its structure and parameters, 

without neither simulation nor signal analysis, relevant 

information regarding to the sound phenomena it will 

allow to produce. It is basically a transposition of what 

the Fourier analysis is for the sound signal to the model 

that enables its simulation. 

2.1 The model modal representation 

The model modal analysis relies on a mathematical de-

scription of the “mechanical network” that is intrinsically 

every topological CORDIS-ANIMA model. This me-

chanical network must be a linear vibrating structure 

moving with only one degree of freedom. Then, the anal-

ysis process first aims at switching in representation from 

a topological model to its equivalent modal model [5]. 

The latter can be seen as a set of damped harmonic oscil-

lators with unitary inertias (counting as much oscillators 

than the number of punctual moving <MAT> of the orig-

inal topological models).  

These oscillators represent the stationary vibration 

modes of the original topological structure. Ultimately, a 

proper study of the latters will allow a complete 

knowledge of the original model in terms of mechanical 

behaviour and acoustical properties. 

The following development applies to free vibrating 

structures without any outer perturbation. 

2.2 From topological model to modal model 

As a network, a linear topological CORDIS-ANIMA 

model can be mathematically described by the combina-

tion of 3 real symmetric matrices:M ,K andZ , carrying 

respectively inertia, stiffness and damping parameters of 

its constitutive modules. 

Obtaining the equivalent modal model of a topologi-

cal one is done by diagonalizing two real symmetric 

matrices K ' et Z '  in the same basis. 

Z ' =M
−1/2
ZM

1/2
& K ' =M

−1/2
KM

1/2           (1) 

 

This is achievable only if the matrices K '  and Z '  

commute (ie :K'Z' = Z'K' ), which is always the case if 

they are linearly co-dependent [6], meaning that Z ' is 

proportional to K ' : 

Z ' = a+bK '     or     Z = aM+bK               (2) 

 

If it answers to relation (2), the viscosity matrix is 

then said “proportional”. The diagonalization process will 

allow to obtain: two diagonal matrices K
m

and Z
m

, re-

spectively containing n modal stiffness k
i

m and n modal 

damping z
i

m , and an additional Qm  matrix such as : 

    
Z
m
=Q

m
Z
t
Q
m

  and  K
m
=Q

m
K
t
Q
m

       
(3) 

 

Mathematically, k
i

m and z
i

m  are the respective eigen-

values of K '  and Z ' , and the Qm matrix, representing 

the common basis of K
m

and Z
m

, contains their associ-

ated eigenvectors (directly interpretable as modal shapes 

of the equivalent topological model). 

The n harmonic oscillators of the modal model are 

then directly defined by unitary inertias, k
i

m and z
i

m as 

parameters. 

 

 

Figure 2. Example of what can be an equivalent Modal 

Model of (Figure 1) Topological Model. 

2.3 Reading a model modal representation 

Some of the mathematical tools that are used for describ-

ing and studying vibratory and acoustical properties of 

physical matter are adaptable to the virtual matter han-

dled in GENESIS. Nevertheless, CORDIS-ANIMA relies 

on a discrete representation of time and matter, which 
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implies well-quantified differences between continuous 

and discreet equations of movement.  

Having the modal model, it is now possible to simply 

analyze each of its individual elementary harmonics os-

cillators [7]. They are defined by 3 parameters, m (=1), 

k
i

m  and z
i

m  in direct relation with: 

The vibration mode frequency:   

f
i
= F

e
⋅arccos

2− k
i

m
+ z

i

m( )
2 ⋅ 1− z

i

m

#

$

%
%

&

'

(
(

                (4) 

Where F
e
is the sampling rate value of signals pro-

duced when simulating a GENESIS model (default value: 

44100 Hz) 

The vibration mode damping time: 

1

τ
i

= −
F
e

2
⋅ ln 1− z

i

m( )                          (5) 

 

We can also learn about relative amplitudes of the dif-

ferent oscillators by a proper reading of the transfer ma-

trix Qm . By choosing the topological structure moving 

<MAT> on which a listening module will be plugged 

(identified as �), and the topological model moving 

<MAT> that will be submitted to an impulsive excitation 

(identified as �). Then we can estimate the relative ampli-

tude of each vibration mode impulse response according 

to: 

A
i
=Q

m

(α ,i )
⋅Q

m

(β ,i )
                            (6) 

The theory beyond complex excitations and sustained 

oscillations of mass-interaction networks is already great-

ly documented [8]. From the modal representation per-

spective, calculation of each independent harmonic oscil-

lator transfer function enables a first insight of vibrating 

model properties under such constraint. For instance, 

resonant frequencies can be determined and a whole 

frequency response of a topological model can be dis-

played. 

2.4 Model analysis implementation 

A specific tool for model modal analysis has been devel-

oped in GENESIS [9] and has now been updated. Fol-

lows a quick tour of its latest improvements and func-

tionalities. 

The diagonalization process involved in switching 

from topological to modal representations is processed by 

using the Jacobi method [10, 11], which allows to obtain 

simultaneously and efficiently both eigenmodes and ei-

genvalues of a given matrix. This operation is quite costly 

but enable to compute the modal representation and 

acoustical properties of models counting more than 9000 

moving <MAT> modules.  

Regarding the proportionality constraint over the vis-

cosity matrix (2), the modal analysis can be run even if 

the model is not proportional. However, we chose to 

implement a simple algorithm testing this proportionality 

prior to the diagonalization process, which alerts the user 

about the relative quality of the obtained result.  

One can select a model or a portion of it directly from 

the bench and launch the Modal Analysis function.  

 

 

Figure 3. Screenshot of the whole Modal Analysis 

Window.  

The displaying window of the result is organized in 3 

distinct parts (Figure 3), which are: 

 

 • A general sheet section, gathering the whole infor-

mation relative to each identified vibration mode of the 

structure, and by extension, to each partial that will com-

pose a sound produced out of it. It also provides an ex-

plicit conversion from frequency to equivalent musical 

note, octave and cents (Figure 4). 

 

 

Figure 4. Modal Analysis Table, gathering modal mod-

el information. Purple columns collect the k
i

m
and z

i

m

modal parameters. The green columns display their as-

sociated acoustical properties. 

 • A modal shapes visualization section, that allows to 

individually display an interactive 3D representation of 

each topological structure modal shapes. The latter can be 

animated and rendered with various static or dynamic 

color gradations. All this allowing for example to clearly 

identify nodes and antinodes of the vibrating structure, 

and ultimately determine where to act on a structure in 

accordance to modes/partials that should or should not be 

predominant (Figure 5).  
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Figure 5. Collection of various topological models 

modal shapes. Left: we can identify the typical modal 

shapes of a circular membrane (here composed of 2148 

moving elements). Middle: we represent some of the 

modal shapes of a “labyrinth” model (from which you 

can escape by looking closely at the first one). Right: 

various “punk smiley” model modal shapes. 

 • A normalized impulse response graph section, provid-

ing a global picture of the whole frequency spectrum 

associated with relative amplitudes of model vibration 

modes. This supposes that both in and out points, respec-

tively, excitation and listening points, are selected direct-

ly on the model displayed in the modal shape visualiza-

tion section (Figure 6). 

 

 

Figure 6. 3 impulse responses of a “string” model, 

composed of 40 moving <MAT> modules, excited and 

listened in different points. (a) Input: module 1, Output: 

module 40. (b) Input: module 4, Output : module 40. (c) 

Input: module 20, Output : module 20. 

3. MODEL TUNING 

Having a mass-interaction network and looking to have a 

better understanding of it is one thing. Trying to tune it, 

or in the most extreme case, having a “sound” in mind 

and trying to reproduce it by the mean of mass-

interaction networks suggest an other level of considera-

tions. With the idea to provide tools to help the users, and 

to keep close to the illustrative concepts of the model 

modal analysis, we have tried to explore the way back 

from a modal model to its topological equivalent. 

First thing first, lets assume that one has built a topo-

logical model. How can they tune the latter by modifying 

properties of its modal equivalent? 

3.1 From modal back to topological 

In the very limited case of a topological model of which 

the modal equivalent carry a single harmonic oscillator, 

we can easily reverse the linear equations (3) and (4) and 

then tune this oscillator by recovering a proper set of 

stiffness and viscosity parameters with frequency and 

damping time as inputs.  

Considering a modal model with more than one har-

monic oscillator, it wouldn’t be possible to tune each one 
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of them independently because of K
m

and Z
m

 that must 

be preserved for the relation (3) to stay true (necessary 

condition to get back from a modal representation to the 

original topological representation). Nevertheless it is 

possible to apply a single multiplicative coefficient to 

each of these matrices. This authorizes to set one vibra-

tion mode frequency and damping time. Of course all the 

other structure vibration modes will be proportionally 

tuned. This function exists in GENESIS and is built di-

rectly into the modal analysis window. Hence, from the 

general sheet section, one can simply edit the acoustical 

properties (frequency, or related musical note) of one 

vibration mode of the modal representation and tune the 

topological model. 

Relative amplitudes of modes depend on the model 

properties and for the most part on how/where it is excit-

ed and listened. There is no trivial function enabling to 

tune a model in a way that the sound it produces has a 

precise amplitude distribution among its partials. For that, 

one will rely on the modal shapes visualization and on the 

impulsion response graph of the Modal Analysis window, 

which might help in finding the best set of in-

put(s)/output(s). 

It is not possible to have an extensive control over the 

physical parameters of a model, according to acoustical 

properties, without altering the equivalence/bridge stand-

ing between its modal and topological representations. 

But by breaking this relation that allows to keep causes 

and effects close together, advanced tuning possibilities 

can be foreseen. 

3.2 From modal back to …? 

Indeed, at a certain point, one could seek to obtain a 

GENESIS model given nothing else that the description 

of a sound they want it to produce. 

A simple solution to that concern would be to recom-

pose complex sounds by reproducing what’s done in 

additive sound synthesis or modal synthesis [12], which 

as already been specifically studied for CORDIS-ANIMA 

applications in [5]: Knowing the modal characterization 

of a sound phenomenon, we could compose it by synthe-

sizing as many sinusoidal signals as necessary, this by 

replicating a relevant amount of independents harmonic 

oscillators. The main issue of this approach is that one 

will have to artificially selectively distribute energy 

among the independent oscillators and selectively “listen” 

to each one of them. Thus, it prevents to obtain a topolog-

ical representation of the proposed modal model and 

might considerably limit users in theirs exploration pro-

cess.  

In [13], the authors already explore ways to tune a 

specific model under frequency constraints. Nevertheless 

a more general approach, aiming at obtaining a topologi-

cal mass-interaction network out of multiple acoustical 

descriptors of sounds, is addressed in [14] and is referred 

as an “inverse problem”. Follows the outcomes of prelim-

inary investigations in simplified cases and their effective 

implementation in the GENESIS environment. 

3.3 An inverse problem 

A model of n moving <MAT> has an equivalent 

modal model of n independent oscillators and thus n 

eigenmodes. If we now consider the description of a 

sound composed of n partials, setting a modal model of n 

moving <MAT> as an input, then a generative topologi-

cal model must have at least n moving <MAT>, and we 

can suppose it is enough to define it. Among the multiple 

solutions that this problem can have, it is necessary to 

arbitrary choose an alleged generative mass-interaction 

network. The simplest topological model of n moving 

<MAT> is the linear “chain”, a “string” fixed at its ex-

tremities (such as in Figure 7), at one extremity or none. 

 

Figure 7. CORDIS-ANIMA linear chain model. 

The reduced inverse problem is then to define, given 

3 vectors of n frequencies, amplitudes and damping 

times, a generative mass-interaction string of n moving 

<MAT> connected by visco-elastic interactions. Different 

approaches have been followed to resolve it, all basically 

trying to recover the descripting matrices of the topologi-

cal (M, K, Z) model given diagonal matrices of the tuned 

modal model (K
m

and Z
m

): 

The first one, a numerical resolution, relies on an 

adapted optimization procedure. It partially addresses the 

reduced problem by tuning only the stiffness parameters 

of the generative model, allowing an individual control of 

each structure vibration mode frequencies (in this case, 

the moving <MAS> modules are set with unitary iner-

tias). 

The second is algebraic and allows to control fre-

quencies as well as relative amplitudes of each vibration 

mode of the generative structure. Hence, the stiffness and 

inertia parameters of the latter are tuned. Unlike the nu-

merical approach, this one is case specific and only al-

lows to generate “string” models.  

In this case the relative amplitudes are set by direct 

manipulation of the modal shapes matrix Qm . 

Further details about the previous can be found in [14] 

A third approach has been dedicated to enable a spe-

cific control over vibration modes damping time. We 

previously discussed the term of “proportional viscosity 

matrix” and expressed it with relation (2). Going from a 

modal representation to a topological one implies to stick 

close with this rule. Hence, having the inertia and stiff-

ness parameters of a topological model already tuned 

regarding frequencies and relative amplitudes of its vibra-

tion modes, gives a pretty restricted control over the rela-

tion (2). Indeed, only two multiplicative values, a and b, 

can be edited, meaning that only two vibration modes 

damping time can be adjusted (the other ones will be 

proportionally balanced).  

Actually, these two values are physically coherent and 

are a proper metaphor of external and internal viscosities 

of a mechanical object. a, applied to the inertias matrix, 

can be liken to an external viscosity and represent the 

dissipative effect of viscous environment in which a 

model is immersed. b, applied to the stiffness matrix, 
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could represent an internal viscosity and stand for the 

dissipative effect inherent to the model internal physical 

matter. Thus, by renaming respectively a and b to z
int

and 

z
ext

 in (2) we have a direct expression of the topological 

model viscosity matrix:   

 

Z = z
ext
M+ z

int
K                             (7) 

 

Setting the damping-time of the i
th

and jth  modes, 

with i < j, implies: 

τ
i
≥ τ

j
                                     (8) 

 

The internal and external viscosities constants are 

then defined by:

 

z
int
=

exp −
2

τ
i
F
e

!

"
##

$

%
&&− exp −

2

τ
j
F
e

!

"
#
#

$

%
&
&

K
( j, j)

m -K
(i,i)

m
                    (9) 

z
ext
=

K
( j, j)

m 1− exp −
2

τ
i
F
e

!

"
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$

%
&&

!

"
##

$

%
&&−K (i,i)

m 1− exp −
2

τ
j
F
e

!

"
#
#

$

%
&
&

!

"

#
#

$

%

&
&

K
( j, j)

m -K
(i,i)

m
 (10) 

 

It is interesting to point out that the relation (8) guar-

anties positive internal viscosity values. On another hand, 

external viscosities might take negative values, which 

metaphorically would imply that the model environment 

provides energy instead of absorbing it.  

Also, viscosities do have an influence on the vibration 

mode frequencies, but, they are quite insignificant, and of 

course this influence has to be evaluated regarding per-

ceptual matters. 

This approach works on every linear mass-interaction 

network, whatever its topology and complexity. 

It doesn’t seem possible to go further in controlling 

the damping-time of a modal model vibration modes 

without breaking the proportionality, altering the topolo-

gy of the resulting model, or by staying physically coher-

ent and thus being easy to handle by any user. 

3.4 Model tuning implementation 

3.4.1 PNSL Scripts 

The different approaches previously proposed have been 

implemented thanks to an additional tool included within 

GENESIS: The Physics Networks Scripting Language 

(PNSL) [1]. This language has been developed to address 

mass-interaction networks modeling specific needs. For 

instance, by putting down some lines of script, it allows 

to create modules, to inter-connect them, to compute and 

set them with precise parameters, to automate repetitive 

tasks regarding topological or bench positions matters, to 

alter selected models, and so on. All this is fully integrat-

ed so one can edit and execute scripts directly into the 

GENESIS environment (Figure 8), and provides another 

modeling process, complementary to the bench direct 

manipulation of modules. 

 

Figure 8. Screenshot of GENESIS PNSL Script Editor. 

One of the central considerations in building this tool 

and its syntax was to make it intelligible and easy to use, 

even for users non-acquainted with programming lan-

guages. Nevertheless, it is built over Tool Command 

Language (TCL) scripting language and therefore in-

cludes a lot of advanced libraries [15]. 

3.4.2 Inverse problems scripts 

The numerical approach allows to efficiently obtain gen-

erative models defined by up to 20 frequencies. The time 

of resolution increases dramatically with the number of 

frequencies to deal with (in the case of 20 tuned vibration 

modes, the calculation might take about one hour). Its 

main advantage is that it doesn’t depend on the kind of 

topology you may expect for the output model. It is also 

convenient to have all inertias set to 1 when bringing the 

generative model back to a common utilization in using 

GENESIS. 

In its latest version, the algebraic approach is suitable 

for fixed, half-fixed or free linear chains. Any other to-

pology for the output model would need to have its dedi-

cated algorithm. However, with this approach we man-

aged to obtain generative models defined by up to 50 

frequencies and relative amplitudes. The global quality of 

this resolution, as well as the coherence of the resulting 

model, relies on the relative proximity of the wanted 

frequencies. For instance setting the modal model with 

very close frequencies (of about 1Hz) might introduce 

numerical imprecisions during the algorithm calculation 

and lead to partially tuned generative models. 

Both of the previous methods can be executed in 

GENESIS and produce a topological network right on the 

bench.  

The damping-time tuning method needs the user to select 

a model directly on the bench. Running the script will 

then only tune its viscosity parameters. 

With PNSL, a lot of new functions can be developed, 

easily used, and of course modified and enhanced, allow-

ing easing prospective works in mass-interaction net-

works modeling. Inverse problem resolution scripts were 

the first ones to fully take advantage of this tool, and will 
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be fully accessible as demonstrative scripts in the next 

update of GENESIS. 

4. CONCLUSIONS 

The mass-interaction networks modeling used in GENE-

SIS rely on a very unique set of concepts. Its modularity 

makes it very generative and the exploration of what can 

be expected out of it seems far from its ending despite 

decades of developments, experimentations, and of 

course, of active utilization and artistic creations made by 

researchers and artists. 

Luckily these concepts are close to the physics of real 

things, so on one hand, users can easily bring their physi-

cal instincts in the creative process involved in sound 

synthesis and musical composition and, on another hand, 

the tools developed with the aim of easing this creative 

process can themselves rely on physical metaphors and 

make direct sense to users. 
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