
Sound Processes: A New Computer Music Framework

Hanns Holger Rutz

IEM – Institute of Electronic Music and Acoustics

University of Music and Performing Arts

Graz, Austria

rutz@iem.at

ABSTRACT

Sound Processes is an open source computer music frame-

work providing abstractions suitable for composing real-

time sound synthesis processes. It posits a memory model

that automatically persists object graphs in a database, pre-

serving the evolution of these objects over time and making

them available either for later analysis or for incorporation

into the compositional process itself. We report on the ex-

perience of using a prototype of this framework for a gen-

erative sound installation; in a second iteration, a graphical

front-end was created that focuses on tape music compo-

sition and introduces new abstractions. Using this more

controlled setting allowed us to study the implications of

using a live versioning system for composition. We encoun-

tered a number of challenges in this system and present

suggestions to tackle them: the relationship between com-

positional time (versions) and performance time; the re-

lationship between text and interface and between object

dependencies and interface; the representation, organisa-

tion and querying of musical data; the preservation and

evolution of compositions.

1. INTRODUCTION

The emergence of computer music systems is often tied to

general developments in the computer science discipline,

such as the establishment of new programming languages

which serve as host languages or the appearance of new pro-

gramming paradigms—e.g. object-oriented programming—

that find their way into domain specific languages. Hard-

ware developments also play a role, for example by making

it possible in the mid 1990s to build new real-time sound

synthesis systems for desktop computers. There is probably

no abstraction or paradigm that has not been explored for

its musical potential: Functional programming, dataflow

programming, constraints and logic programming, concur-

rency abstractions, aspect-oriented programming, along

with a number of design patterns.

On the other hand, the basic questions one has to answer

when designing such a system appear to be unchanged. Al-

ready in 1976 Barry Truax listed the following: Which data

representations are chosen, which operational capabilities,

Copyright: c©2014 Hanns Holger Rutz . This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

how is the flow of control organised and what are the input

and output requirements? What are the structural levels

and what is the granularity of access to the musical data,

how can it be arranged and grouped? But also: What is

the coverage of the system, to what extent does it intend to

reflect the overall compositional process? [1]

1.1 Musical Representation

A great deal has been written about the representation of

musical data, but some of the debate such as the age-old

juxtaposition between procedural (implicit) and declara-

tive (explicit) representation [2] has obscured more rele-

vant aspects: The first concerns the understanding of rep-

resentation as knowledge representation. Michael Ham-

man discusses this problem and defines ‘representation’ as

something that «constitutes the agency through which an

interface is embodied by orienting a particular way of con-

ceiving and understanding a signal» [3]. If we rely solely

on the established cultural denotation of representations,

these might be useful, but we run into danger of confound-

ing representation with the represented.

Second, taking the previous definition, it is clear that rep-

resentations have a translational potency. A representation

can always be rewritten as another, qualitatively distinct

representation. For example, a procedural description of a

sound production can be unfolded by following the proce-

dure and recording its output, perhaps yielding an explicit

sequence of events in time. Procedures in turn can be spec-

ified declaratively, giving rise to an abstraction such as the

dataflow variable.

Finally, a representation specifies what is not represented.

In the aforementioned article Truax made two important

remarks: Before the advent of computer composition sys-

tems, the process of composing was difficult to assess, rely-

ing on artefacts such as the final score or at best sketch-book

notes. The introduction of computer programs and the use

of technical aids have resulted in «an increasing observabil-

ity of musical activity», since these aids “externalise” the

process. He then posits the thesis that any computer system

embodies a model of the musical process; it becomes a

“data source” for the study of musical activity.

The corollary that can be derived from these remarks

is that a computer music system should take the activity
of composing into account. But in the nearly forty years

that have passed, the interest in musical representations

has almost entirely focused on the way “musical time” is

formulated—the time in which elements are placed during

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1618 -

mailto:rutz@iem.at
http://creativecommons.org/licenses/by/3.0/

the performance of a piece.

2. ACCOUNTING FOR CREATION TIME

Music software already stores data in a persistent way so

that it becomes available for a later inspection. A number of

experiments that observed composers at work asked them

to store “snapshots” of these data, so that the evolution of

the composition process could be examined. Apart from

the coarse granularity of such sequences of snapshots, this

approach requires an active intervention of the composer.

As Christopher Burns notes:

«Composers are generally more interested in

producing work than in documenting it. Sketches

and drafts are often saved only if their continu-

ing availability is necessary for the completion

of a project, and mistakes and false starts are

unlikely to be preserved.» [4]

My main critique however concerns the usage of the data

thus obtained. Truax reserves the observation to “theorists”

who seek to understand the musical activity, whereas the

composers themselves are not mentioned. The externali-

sation of the storage action means that the historic trace

of the decision-making process itself has no useful repre-

sentation within the composition system itself. There is

no re-entry of the temporal embedding of the decisions

within the decision-making process. This is also implicit in

Burns’ reflection that assumes a complementarity between

production and documentation.

As an analogy, we can look at the process of software de-

velopment. Today it is not possible to imagine this process

without the employment of version control systems such as

Git or Subversion. These technologies have multiple goals,

including the review of decisions in order to find mistakes

and the possibility for multiple users to concurrently ma-

nipulate the code base and eventually “merge” their work.

What is not provided is for the developed software to en-

gage with its own history, so there is no interface back from

the versioning system to the developed software.

This is probably fine, since versioning is just a “tool” in

the software design process that helps to achieve the de-

sign goals. In computer composition, however, questions

of representation—the data structures, their interfaces and

relations—are the very materials of the composition itself.

Hamman, in looking at Agostino Di Scipio’s work and

that of Gottfried Michael Koenig, argues that «just as one

might compose musical and acoustical materials per se, one

might also compose aspects of the very task environment

in which those materials are composed.» If the process of

decision-making is itself made manifest within the com-

position system, it can re-enter that process as one of its

possible materials.

To distinguish the different temporal ascriptions of a da-

tum, we proposed the following terminology: [5]

• The (actual) performance time TP. When a musical

datum is heard in a “real-time” performance, this

happens in TP.

• The virtual performance time T(P). This is the rep-

resentational form of TP. For example, if we think

of a timeline view, the positions of elements on the

timeline are values in T(P).

• The creation time TK. This is the time when an ob-

ject is created, modified or deleted as part of the

composition process.

In Sound Processes the primary concern is the handling

of TK as it informs the underlying memory model. The

data structures employed and their interaction have been

described before [6], thus we just give a brief overview.

2.1 A Memory Model for Sound Processes

The memory model is an extension of software transac-

tional memory (STM). In STM, the basic unit of operation

is a reference cell that stores a value. The two permitted

operations are access (reading the value) and update (writ-

ing or overwriting the value). This value can be either an

immutable entity such as a number or a pointer to another

reference cell. The operations must be performed within a

transaction that provides the properties of atomicity, consis-

tency and isolation: Multiple operations performed inside

the same transaction form one compound and indivisable

operation. If an error occurs, all operations participating in

the transaction are undone together.

Transactions are also used in databases, and since version

control systems utilise databases, there are similarities be-

tween an STM and a VCS. Similar to the snapshot scenario

above, in a VCS the user explicitly decides when to make

a new snapshot. This action is called commit. This is a

manual transaction and it is the responsibility of the user

to maintain some sort of “consistency” for the state of the

code base at the moment of committing. Each commit is

tagged with a user identifier and a time stamp and consti-

tutes a new version. The VCS allows one to create new

branches from any previous version and to merge multiple

branches into one, producing a version graph.

In Sound Processes, the STM is extended with the seman-

tics of a versioning system: Each transaction is associated

with a time stamp representing TK, and the evolution of

the reference cells is automatically persisted to secondary

memory (hard-disk). From the user’s perspective, these

cells still look like ordinary STM cells, but they have to be

accessed through special transaction handles provided by

so-called cursors. A cursor represents a path into the ver-

sion graph, and when a cell is accessed or updated, behind

the scenes a complex index resolves the history of that cell

to find the value associated with it at the particular moment

in TK. From the system’s point of view, it makes no dif-

ference whether one looks at the most recent “version” of

a composition or any other moment in its history. More-

over, we can now programmatically ask when a datum was

modified or what its past states were, and we may use this

information in an artistically meaningful way.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1619 -

3. SECONDARY DATA STRUCTURES

On top of this fundamental level of an automatic and con-

comitant versioning, arbitrary structures can now be de-

fined for the “intrinsic” musical data.

Many authors have taken up on the distinction between in-
time and outside-time data prominently expressed by Iannis

Xenakis. We can now say that “outside-time” only refers

to T(P). The composer conceptually “spatialises” material,

i.e. organises it in some form of tableau or collection of

things which can be manipulated prior to assigning them

positions in T(P).

3.1 Expressions

We provide simple data types for numbers, boolean values,

strings etc. along with tuples and ordered and unordered

collections. In order to be able to establish relationships be-

tween such elements, we create a dataflow-like layer. Here

objects can propagate changes to their dependents. Un-

like variables in common dataflow programming languages

whose values are initially unknown and will be assigned

only once, we use the concept of expressions that have an

initial value and may be updated multiple times. Thus they

closer resemble objects in a PD or Max patch.

Without loss of generality, we propose to represent points

in T(P) as expressions whose value is of type Long, a 64-bit

integer number representing an offset in sample frames at

a chosen sample rate and logical offset. Time intervals use

type Span which can be thought of as a tuple of a start and a

stop point in time. Unbounded intervals are also permitted,

e.g. if an object is created in a real-time live situation, it

may have a defined start point but an undefined end point.

If the object is eventually deleted, the span is updated with

a defined end point.

The following code is an example of how a program-

matic creation of an expression tree looks like. It defines

a function that ties a span succ to an arithmetic expression

formed by an offset gap appended to another span pred:

def placeAfter(pred: Expr.Var[S, Span],

succ: Expr.Var[S, Span],

gap : Expr [S, Long])

(implicit tx: S#Tx): Unit = {

val newStart = pred.stop + gap

val newStop = newStart + succ().length

succ() = Span(newStart, newStop)

}

A visualisation of the structure is shown in Fig. 1. In

short, an object Expr[S, Long] is an expression in sys-

tem S which evaluates to a long integer. Different systems

can be used to decide whether a structure should be traced

in TK or not. An Expr.Var is a variable holding an ex-

pression. The broken arrow results from reading the old

value of succ() for determining the length of the updated

span. The graph is thus acyclic—cyclic object graphs are

currently not supported.

3.2 Sounding Objects

The symbolic nature of programming languages naturally

produces a bias towards supporting symbolically repre-

sented structures. To improve on the support for electronic

Expr.Var[S, Span]pred:

.stop

Expr[S, Long]

Expr[S, Long]

+

Expr[S, Long]

gap:

succ: Expr.Var[S, Span]

.apply

Expr[S, Long]

+

Expr[S, Long]

Expr.Var[S, Span]

Span.apply

newStart:

Expr[S, Span]

.length

:newStop

.update

Figure 1. Expression chains produced by function

placeAfter. Arrows point in dataflow direction from de-

pendency to dependent.

and electro-acoustic materials, we base our core abstraction

for sounding objects, Proc, on three members:

1. An expression graph that evaluates to a unit gener-

ator graph handled by the ScalaCollider library, a

client for the SuperCollider Server.

2. A dictionary scans that maps between logical signal

names and real-time input or output signals.

3. A dictionary attributes that maps between logical

key names and heterogeneous values used to config-

ure the sound process.

The unit generators are extended by various elements which

interact with the Proc structure, for example by reading

from a scan input, writing to a scan output, determining the

placement of the process in time, accessing the attributes

dictionary, etc.

A ‘scan’ is a connecting point, it administrates sinks (pro-

cess outputs) and sources (process inputs). A sink or source

may be either a grapheme or another scan. A grapheme

is a random access object—accessible both in real-time

and offline—producing a linear time signal from segments

of break-point functions or stored audio files. A scan sig-

nal is produced either by linking the scan’s source to an-

other scan’s sink—thus establishing “bus routing” between

processes—or a grapheme input, or it is produced by the

process’ graph function itself. This is illustrated in Fig. 2. 1

Processes are placed in T(P) by associating them with a

time span—which may be an expression and thus algorith-

mically specified and updated. A special data structure

keeps a designated group of processes indexed in T(P), and

a transport class may then iterate over this temporal dimen-

sion in real-time (or offline for the purpose of bouncing).

4. VOICE TRAP

Several pieces were realised using the system. We report

on two of them: A sound installation Voice Trap, written

1 The dashed arrow from grapheme to graph means that the implemen-
tation for plugging graphemes directly into sinks is currently missing, but
that there are work-arounds to record the real-time signal and introduce
the recording as a new grapheme.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1620 -

Figure 3. Wide shot and details of Voice Trap (top), and version graph detail (bottom)

Scan
source

sinks
in

graph

scans

Proc B

Scan

graph

sc
an

s

Proc A

source
sinks

Grapheme

out

Figure 2. Interaction between scans, graphemes and graph

functions

using the “bare-bones” framework, and a tape composi-

tion (Inde)terminus, written using an emerging environ-

ment with a graphical front-end.

Voice Trap is a collaboration between me and visual artist

Nayarí Castillo. It is spun around the story of a girl who is

haunted by voices. The story is written across four large

mirrors on the floor of the room. Large jars, “voice traps”,

are filled with different materials and placed on the mir-

rors. The jars are tagged with the written description of

a particular voice and their contents relate to the sound

qualities of the imaginary voices. The sound installation is

diffused from 96 piezo speakers grouped into twelve chan-

nels which are placed on a metal grid suspended below the

ceiling. Fig. 3 shows photos of the exhibition.

The material of the sound composition comes from a mi-

crophone that picks up the noises from the street in front

of the gallery. These are fed into a database from which

individual phrases are constructed. An algorithm searches

the database for sounds that are both similar to the currently

playing sounds as well as to an inaudible “hidden” file con-

taining different voice recordings. The idea is that from

the outside sounds those fragments will be preferred which

contain speech. Each of the twelve channels operates inde-

pendently; the evolution of each channel is captured by our

framework, and the algorithm can make references to this

history.

The bottom of Fig. 3 shows an example version graph

for four channels. Each channel has a dedicated cursor,

and each horizontal stretch is the succession of transactions

producing a certain number of iterations over the sound

phrases followed by a jump into the “past”, going halfway

back between the current transaction and the last branching

point. After a jump back in TK, the sound phrase from

that past version is heard again, but the successive evolu-

tion (overwriting of fragments with new sounds) diverges

from the previous path, because the sound database itself

is ephemeral and not reverted to a previous state.

Although I found it difficult to perceive these jumps—

perhaps due to the channel-locality of the jump or due to

the fact that the specific environmental sounds are more

difficult to distinguish than traditional musical gestures

made from pitches—this piece demonstrated that the frame-

work is functional and can handle a continuously growing

database even after tens of thousands of transactions and

several hundred megabytes file size.

There was no specific development environment that al-

lowed the composition of the algorithms in a traceable way;

they were written in the object language using a traditional

IDE, an activity which remained unobserved. On the other

hand, the traces the algorithm produced inside the observed

domain were easily captured. Constructing a whole meta

language was too much of an effort at this stage, so another

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1621 -

 ! " # $

$!% "% #%

 ! " #

$ % &

Figure 5. Procedure of (Inde)teminus. The edge labels

indicate the sequence in TK. The fifth iteration replaces the

first iteration in the first recursion—second row—which

“rewrites” iterations 2 to 4.

path had to be taken to validate the approach in a more

constrained setting.

5. (INDE)TERMINUS

Such a setting was established in another experiment. Its

working title (Inde)terminus refers to Gottfried Michael

Koenig’s tape piece Terminus I from 1961 which is based

on a scheme for deriving sounds from previous sounds by

applying a set of transformations [7].

To realise this electroacoustic study, a graphical tape

music environment named Mellite was written, based on

Sound Processes. A screenshot is shown in Fig. 4. On the

left side, a timeline view can be seen with several audio file

regions placed on the canvas. The supported operations are:

adding and removing, selecting, moving, resizing, muting

or un-muting a region, adjusting its gain and fade curves.

We use the concept of a workspace which is a tree of “el-

ements”, shown as a window on the right-hand side of the

screenshot. The opened popup menu shows the types of el-

ements supported: folders, process groups (timelines), arte-

fact stores (hard-disk locations), audio files, text strings, in-

teger and decimal numbers, and code fragments. Elements

can be dragged and dropped between different locations of

the interface.

The code fragment elements played an essential part. The

experiment begins with an initial hand-constructed canvas

of three minutes duration, sparsely placing sounds on an

8-channel layout. In the next step a bounce is carried out

and fed through a signal processing stage, becoming the

blueprint for the next iteration. Here, a new canvas is built

around this blueprint, possibly cutting it up, removing some

parts of it and adding new sounds. Then again a bounce

and a transformation is carried out, and so forth. This is

illustrated in the top part of Fig. 5.

The environment uses an embedded Scala interpreter and

an integrated code editor to textually manipulate objects

or, in this case, to define transformations of the bounced

sounds. The creation procedure of this transformed sound

file is memorised, so it can be re-rendered at a later point

even if the input canvas has changed. This idea is illustrated

in Fig. 6 and works as a generalisation of the expression

cells, whereby the deployed sound file artifact serves as the

“evaluated” expression.

In this study the transformation was a segmentation and

reversal of the resultant segments of the bounced file. Each

channel was bounced and transformed separately, leading

- process group

- selected time span

- output channels

Recursion Object

bounce

transform

- transform function

iterate

- deployed artifact

- product artifact

Figure 6. Algorithm for the transition to the next iteration

to different segmentations so that not only a diachronous

reversal occurs, but also a synchronous scattering. The

transformed bounces were placed on a new timeline and

cut again into chunks to remove the silent parts. The new

temporal structure was then adjusted and “composed”, pos-

sibly thinning out the material further or introducing new

elements. Since the next iteration would again reverse the

temporal succession, a specific similarity arises within the

group of even-numbered iterations and within the group of

odd-numbered iterations.

The trace of the re-imported bounces permitted the cre-

ation of a closed recursive setting: After a certain number

of iterations, the input to the initial bounce is exchanged

for the result of the most recent (fifth) iteration, retroac-
tively re-triggering the bounce and transformation of Fig. 6.

Consecutively, the iterations would be re-worked, a proce-

dure that could be repeated ad infinitum, explaining the title

of the study. Practically, this re-working was carried out

for the second (sixth), third (seventh) and fourth (eighth)

iteration, as shown in the bottom row of Fig. 5.

The “flattening operation” of the bounce establishes what

may be perceived as a crucial deferral or suspension in

the process: A time canvas is manipulated whose prod-

uct is used in another canvas, but the propagation of the

changes from the former to the latter is suspended until a

conscious decision is made. Furthermore, the flattening

bounce provides the closure of the material which makes it

possible to subject it again to general transformations such

as the segmentation and recombination. This connectivity

is an important feature of a representation, perhaps more

important than its “symbol” function (Hamman).

5.1 Ex Post Analysis

From an outside perspective, the version history can now

be used to query different aspects of the process. As an

example, Fig. 7 shows a “punch card” plot similar to the

ones given by popular open source platform GitHub. It

indicates at what times of the week someone has worked

on a piece of software. While composing is hardly an office

job, charts like this, especially when more data is available,

could reveal different profiles of composers, or they could

be used to compare different types of activities.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1622 -

Figure 4. Screenshot of the (Inde)terminus session

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
hour

Sun

Mon

Tue

Wed

Thu

Fri

Sat

Figure 7. “Punch card” of working hours distribution

While the selection of sound files was not important to the

concept of (Inde)terminus, we used a query in a different

composition to reveal when particular sound files had been

added to the piece, and it was possible to further elucidate

this trajectory in TK by taking manual sketch-book notes

into account.

Another approach is to look at the tool usage. Fig. 8

shows the relative proportions. Extracting this data from

the database was laborious, because the transactions were

not specifically tagged by the software and needed to be re-

constructed by analysing the structural differences between

successive points in TK. To see how the proportions change

over time, two charts were generated. The top chart shows

the earlier transactions, relating to the first two iterations of

the experiment. The bottom chart relates to iterations 2–4

after the recursion (or the second row in Fig. 5).

Moving and resizing amounts to more than half of the

actions performed. 2 As the process unfolds, the relative

number of additions, removals and especially movements

decreases. This is in accordance with the idea to let the

bounce transformation create a temporally reversed struc-

ture by itself and to accept that structure as a basis of each

new iteration. In contrast, the number of region splittings,

2 However, the extraction of data for gain change actions was difficult
in this particular study and is omitted in the charts.

16× Mute

62× Fade

94× Resize

45× Add

10× Remove

14× Split

55× Move

66× Mute

175× Fade

65× File

51× Add

4× Remove

33× Split

50× Move

207× Resize

Figure 8. Frequencies of Mellite tool actions in the begin-

ning (top) and at the end of the study (bottom)

adjustments of fade curves and mute/unmute actions goes

up. It may indicate more work on the detail of the sound

as well as an increased density of sounds that requires to

mute sounds temporarily in order to monitor these details.

Muting can also be used as an alternative to removing re-

gions. The black pie segment labelled “File” indicates the

actions of replacing the previously deployed artefacts with

the updated artefacts.

One can also look at the parametrisation within the groups

of actions. Fig. 9 shows the distribution of varieties among

the resize actions and the region movements. The his-

togram bins use a logarithmic time scale and labels give

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1623 -

–3
93

.6
6

–1
31

.2
2

–4
3.

74

–1
4.

58

–4
.8

6

–1
.6

2

–0
.5

4

–0
.1

8

–0
.0

6

0.
00

+
0.

06

+
0.

18

+
0.

54

+
1.

62

+
4.

86

+
14

.5
8

+
43

.7
4

+
13

1.
22

+
39

3.
66

amount [s]

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

fr
eq

u
en

cy

–3
93

.6
6

–1
31

.2
2

–4
3.

74

–1
4.

58

–4
.8

6

–1
.6

2

–0
.5

4

–0
.1

8

–0
.0

6

0.
00

+
0.

06

+
0.

18

+
0.

54

+
1.

62

+
4.

86

+
14

.5
8

+
43

.7
4

+
13

1.
22

+
39

3.
66

amount [s]

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

fr
eq

u
en

cy

Figure 9. Distribution of the amount of contraction and

expansion in resize actions (top) and relative time shift in

move actions (bottom)

the lower interval margin. The vertical line in the centre

distinguishes contractions on the left and expansions on

the right (resize) or shifting backward in T(P) on the left

and forward in T(P) on the right (move). An interesting

“left-leaning” tendency can be observed in both cases: Re-

gions tend to be shortened rather than elongated, but also

material moves backward in time more often than forward,

perhaps due to an editing style which initially gives each

region some isolated space before condensing the structure

left-to-right. Besides, there is an overall bell shape in the

distribution of both action types, which may be inherent to

the type of sound material used or dominated by the typical

zoom levels used in the graphical interface.

Another analysis examined the development of the sta-

tistical moments of the regions’ durations over time, and

some characteristic motions and settlements could be ob-

served. These charts and their discussion have been omitted

for reasons of space. There are many more possible ways

of extracting information from the database: One could

compare composer with composer, piece with piece, sec-

tions within a piece, sections within the creational timeline;

one might use such information to test or support hypothe-

ses about the working process, the musical material or the

human-computer interaction. The beauty of this approach

lies in the fact that the situation is not a priori contaminated

with “musical meaning” or “musical interrogation”, but in-

deed accentuates motions which underlie the compositional

process and which may otherwise remain tacit.

Finally, we created a transcription that brings together

TK and T(P). Such “motiongrams” are shown in Fig. 10.

The blackening corresponds horizontally with the span in

T(P) affected by an action at a given vertical point in TK.

The different iterations of the experiment are preserved as

horizontal segmentation. One could interpret that diagram

again. One would find the “carriage returns” in scanning

through the timelines; discern the initial phase of each

iteration from the subsequent refinement; see moments of

obstinate distillation at a particular spot; see at which point

in TK a certain part of the piece is more or less finished. . .

6. LIMITATIONS AND FUTURE DIRECTIONS

Drawing from the experience gathered so far, we will now

highlight some limitations and make suggestions for future

refinements of the framework. First of all, the querying

possibilities should be improved and extended, especially

for collections: Finding out when elements were added or

removed requires iteration over the whole data structure for

each possible version step. What we envision is a general

indexing operation that produces auxiliary data structures

for ordered or unordered sequences. One should be able to

index a group of sound processes not just by their position-

ing in T(P) but by arbitrary parameters such as creation or

modification date in TK, timbre or dictionary key. Collec-

tions should also allow the application of (dynamic) filters.

Indices must be kept up-to-date and in- or revalidated

when a key changes. An infrastructure for forward depen-

dencies between objects already exists due to the event bus

system that drives the dataflow and expression types. The

more experience we gain from using the system, the more

desirable it seems to extend the memory model with an au-

tomatic way to trace forward references. For example, if an

object is “deleted”, we might want to determine any other

locations within the workspace that refer to this object.

Does the composer wish to remove the object only in one

particular place or across the workspace? A forward refer-

ence mechanism more general than event passing yields a

form of automatic garbage collection. We imagine that the

next iteration of the framework will implement a simple

form of GC such as reference counting.

Another consequence of forward references is that the

serialisation mechanism must be adapted. It is currently

a statically typed and strict top-down approach. While it

has many advantages, it cannot handle “blind” bottom-up

deserialisation which would be needed for these forward

references, and it is hard to extend the expression system in

an open-ended way. Blind deserialisation would also ease

the exporting of data to other formats and the automatic

deep traversal of data structures, something that would

allow the copying of objects from one workspace to another.

Currently, workspaces are isolated from each other.

In terms of programming paradigms, a generalisation of

the dataflow model with logical variables modelling con-

straint satisfaction problems (CSP) seems an interesting

direction. These types of variables are initially only known

by their bounds or the domain of values they can possibly
take on. Comparable to the way in which we construct ex-

pression chains with single valued variables, these logical

variables can be composed, and special operators establish

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1624 -

Property Current state Proposal

Memory disposal Manual Garbage collected

Serialisation Static, top-down + Dynamic

Cyclic graphs No Yes

Indices Specific Generic

Timeline objects Non-nested Nested, recursive

Expressions Determinate + Constrained

Workspace Isolated Interacting

User Single Collaborative

Table 1. Suggestions for improving the framework

constraints between them. Instead of saying that a sound

object starts this much time after another sound object (the

placeAfter example), we can just generally say that it

starts after that sound, or we could say it starts at most this

and this much time after that sound.

In terms of the representation of musical data, we feel that

the current timeline model is too limited. A more powerful

representation would allow the hierarchic and recursive

nesting of elements in T(P). Similar to the idea of filtering

collections as an expression operator, fragments of one

timeline could appear within an outer timeline.

In terms of usage scenarios, the studies have shown that

the framework scales reasonably well to be used for real-

time generative sound installations as well as mixed of-

fline/online work such as tape composition. We have also

developed a real-time graphical user interface for live im-

provisation, but it has not yet been coupled with the current

version of Sound Processes, a case we still have to explore.

A second scenario is the collaboration of multiple com-

posers on a composition, or performers improvising to-

gether; can we associate transactions with different users?

What is the nature of distributed transactions or do we need

to constantly merge multiple distributed transactions?

The previous suggestions have been summarised in Table 1.

Of course, there are many more paths to explore. Graphical

user interfaces is one of them. How should interconnected

dataflow expressions be represented and edited? How do

we convey links and dependencies between different ele-

ments across the user interface, without resorting to “patch

cords”? How continuous are the transitions between a live

improvisation view and a tape editing view? What is the

relation between code fragments and graphical, symbolic

or iconic elements?

7. CONCLUSIONS

We concluded our previous paper [6] by saying that the

most important task would be to put the framework into

production in different contexts and see how it scaled un-

der real-world conditions. We believe this task has been

successfully completed, and the current paper showed that

a great number of interesting questions arise from the pos-

sibility to concomitantly trace the version history or to

analyse it ex post facto.

Our next research focuses on the challenges and sugges-

tions described in the previous section, as well as the exten-

sion of the Mellite front-end to a full-blown environment

usable by other composers. The conflict between such us-
ability and the critical value software plays in the artistic

episteme is aptly worded by Hamman: [3]

«When well-designed, the interface should

tell us, by reminding us of our history of ex-

perience, how it works. We shouldn’t have

to think about how to use a door knob, for in-

stance . . . At precisely the moment when an in-

terface becomes sensible and useful, however,

the shapes, materials, and structures which

constitute its physical and epistemological frame,

cease to exist in themselves. . . »

We should thus not forget the advantage of having—and

retaining—a prototypical situation that can be understood

as a “foregrounding” of representations, viewing music

composition «as a task that is as much concerned with the

theories and procedures by which musical artifacts might

be generated as it is with the actual generation of those

artifacts.» (Hamman)

Acknowledgments

The research was supported by a PhD grant from the Uni-

versity of Plymouth. The (Inde)terminus study was carried

out during a studio residency provided by ZKM Karlsruhe.

8. REFERENCES

[1] B. Truax, “A communicational approach to computer

sound programs,” Journal of Music Theory, vol. 20,

no. 2, pp. 227–300, 1976.

[2] T. Winograd, “Frame representations and the declar-

ative/procedural controversy,” in Representation and
Understanding: Studies in Cognitive Science, D. G. Bo-

brow and A. Collins, Eds. New York: Academic Press,

1975, pp. 185–210.

[3] M. Hamman, “From Symbol to Semiotic: Represen-

tation, Signification, and the Composition of Music

Interaction,” Journal of New Music Research, vol. 28,

no. 2, pp. 90–104, 1999.

[4] C. Burns, “Tracing Compositional Process: Software

synthesis code as documentary evidence,” in Proceed-
ings of the 28th International Computer Music Confer-
ence (ICMC), Göteborg, 2002, pp. 568–571.

[5] H. H. Rutz, E. Miranda, and G. Eckel, “On the Trace-

ability of the Compositional Process,” in Proceedings of
the 7th Sound an Music Computing Conference (SMC),
Barcelona, 2010, pp. 38:1–38:7.

[6] H. H. Rutz, “A Reactive, Confluently Persistent Frame-

work for the Design of Computer Music Systems,” in

Proceedings of the 9th Sound and Music Computing
Conference (SMC), Copenhagen, 2012, pp. 121–129.

[7] G. M. Koenig, “Genesis der Form unter technischen Be-

dingungen,” in Ästhetische Praxis, ser. Texte zur Musik.

Saarbrücken: PFAU Verlag, 1993, vol. 3, pp. 277–288.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1625 -

Figure 10. Motiongrams for (Inde)terminus. The iterations are shown from left to right, transactions advancing from top to bottom. In each diagram, the horizontal extent covers the

canvas duration of the particular iteration. Dotted lines indicate the beginning of the recursive re-workings. If an invisible grid is superimposed, the matrix of Fig. 5 can be seen.

P
ro

c
e
e
d
in

g
s
 IC

M
C

|S
M

C
|2

0
1
4
 1

4
-2

0
 S

e
p
te

m
b
e
r 2

0
1
4
, A

th
e
n
s
, G

re
e
c
e

- 1
6
2
6
 -

