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ABSTRACT

This paper demonstrates an approach for achieving in-

stantaneous detection and classification of impact sounds

that the user produces while interacting with simple daily

objects. Using a single microphone, the system is trained

to recognize the differences in the resonant behavior of a

plastic bucket, a box made of paper and an empty bottle of

beer, as these objects are struck at different locations. The

method employs a first-nearest neighbour classifier which

is based on simple spectral features extracted from a very

short segment of the acoustic signal. Tests performed illus-

trate that classification rates above 90% may be achieved

with a system response around 5 ms or even less. While

still perfectible, the presented work illustrates the potential

in creating a generic system which would enable the users

to turn costless objects into powerful music controllers and

percussive instruments into Hyper-instruments, by training

the system to respond to their disposable instruments and

audio equipment.

1. INTRODUCTION

In the past two decades, the automatic detection and clas-

sification of percussive sounds from audio signals has at-

tracted the interest from many different researchers. In

most of the works, the primary motivation has been the

demand to improve the efficiency of content-based man-

agement systems by looking into the rhythmic structure of

musical pieces. While there is no standard method, there

are numerous different approaches dealing with automatic

transcription of drum sounds from monophonic or poly-

phonic music recordings, several of them exhibiting a very

high performance. The work of Herrera et al. [1] provides

a very good review of a set of classification techniques for

isolated sounds and it was among the first attempts to pro-

pose a set of universal descriptors that are valid for a wide
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class of percussive instruments, as well as to find ways to

visualize the relationship between these classes. In sev-

eral studies that followed, the weight is put into the adapta-

tion of the descriptor models to the content of the analysed

audio file, exploiting therefore the repetitive nature of the

drum patterns in these files [2, 3, 4, 5]. In the vast majority

of these studies, an off-line application is considered, with

an exception being that of Tanghe et al. [6], who considers

a real-time streaming solution to drum detection.

In contrast to automatic transcription and audio queries,

Human Computer Interaction systems (HCI) have real-time

constraints and demand a fast system response. They also

require reliable detection and identification of percussive

sounds produced from the user, in an attempt to interact

with him by providing some type of visual or acoustic feed-

back or by adapting some system parameters according to

his performance. A first work considering real-time detec-

tors of percussive music is that of Puckette et al. [7], later

exploited by others in the context of an automatic accom-

paniment system [8] and a rhythmic tutoring system [9]. A

system able to perform similar tasks was also recently pre-

sented by Şimşekli et al. [10], showing a good adaptability

to different instruments and acoustic conditions. Finally,

a beat tracking system which is based on real-time drum

detection can be found in the work of Battenberg [11].

Recently, different products have been launched in the

market, providing to the user the ability to control a sound

synthesis process by interacting with simple daily objects.

“Mooges” (http://mogees.co.uk), operates on the output sig-

nal of a contact microphone which is attached on the sur-

face of the physical object. The system is able to track

the user’s gestures continuously and synchronously [12].

It provides immediate acoustic feedback with the intention

to allow the user to learn how to interact with the physical

object in order to improve his performance. “TableDrum”

(by Dohi Entertainment), uses the built-in microphone of

smart-phones and mobile devices. It operates based on a

training stage where the user first records a few acoustic

instances from different objects and then uses these objects

in order to trigger a built in percussive synthesiser. The in-

tention thus is to allow the system to learn how to respond

to the user’s gestures rather than the opposite. While this

particular product is the closest example to the task that
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we consider in this paper, we should state that we could

not find any relevant bibliographic work and therefore, the

methods that are exploited in this application are unknown

to us.

In this paper, we use a single acoustic sensor (micro-

phone) and we employ a low-cost onset detection and a

nearest neighbor classification algorithm in order to sim-

ulate a real-time classification task. Similar to the case

of “TableDrum”, we employ a training phase for learning

the variability within the different acoustic structures but

we focus on the resonant behavior of a single acoustic ob-

ject, as it is stroked at different impact regions. Results

are provided for three simple objects of different material

and size and the relation between classification accuracy

and system latency is highlighted. The findings of this

work are discussed under the perspective of applying the

technique on real percussive instruments. This scenario is

particularly interesting, as it would allow the possibility

for the physical instrument to operate as a traditional per-

cussion controller and more important, as it would enable

the users to create an augmented sound to accompany the

physical sound, turning thus their percussive instruments

into Hyper-instruments.

2. CHALLENGE

When seeing detection and classification of percussive sounds

from the perspective of a real-time application, one expects

an obvious trade-off between latency and classification ac-

curacy. The less is the latency that one would like to have,

the less the amount of information that can be extracted

from the acoustic event before assigning a label. Ideally,

the time delay between the acoustic onset and the action

produced by the computer should be imperceptible. This

demand poses an important restriction to the length of the

analysis frame which can be used for classification, from

now on symbolized as tfr. For obvious reasons, the system

response can not be faster than tfr.

How much can we then shorten the analysis frame and

how much do we expect the classification performance to

degrade? This depends on the nature of the acoustic in-

struments or objects that are used as well as on the com-

plexity of the rhythmic pattern that is performed. For ex-

ample, hand-claps [13] and finger-snaps [14] are optimal

in terms of a fast system response because they last only

for a few milliseconds. On the other hand, other objects

will have significantly longer acoustic tails and this might

degrade the process for an obvious reason; the tail of the

previous strike will mask the onset of the new strike and

the extracted acoustic features will be contaminated with

“noise”. While we can think of several approaches for re-

solving this ambiguity (e.g. source separation), it is shown

in this paper that this problem may in a large degree be

avoided by the choice of the physical objects that are in-

volved in the process. Interestingly, simple costless ob-

jects of our daily lives seem to be very convenient for such

tasks and moreover, their acoustic structures are optimal

for achieving an instantaneous system response.

3. METHODOLOGY

3.1 Onset detection

As in many other approaches, our method for onset de-

tection relies on measures of spectral energy on short au-

dio segments which are called frames. We form frames

by windowing the signal with a short-length Hanning win-

dow moving on a continuous time-grid with hop-size h. At

each frame, the short-time Fourier transform (STFT) is cal-

culated and the frequency bins with index k corresponding

to a specified spectral range k ∈ [kmin, kmax] are used for

further processing. A relatively good method for percus-

sive sounds which exploits such features is the so called

“percussiveness” measure, proposed by Tan et al. [15].

This method relies on the ratio of the magnitude of each

frequency bin between the current frame and the previous

frame. We have observed that the method responds well for

a wide range of dynamic levels but the peaks of the detec-

tion function appear on a noise-floor which is prominent

for causing false detections. In order to avoid such false

detections, we employ an additional measure, B, which is

equal to the L1 norm of the vector consisting of the mag-

nitude of the frequency bins of the STFT in the previously

defined spectral range, at the current frame. We accept

candidate frame centres as onset locations only when con-

ditions A > Atr and B > Btr are valid, where A is the

percussiveness measure and Atr, Btr are empirically de-

fined thresholds. To be noticed that measure B is not only

useful for onset detection; it may be also exploited as a

measure of the intensity of the strike, which may in turn be

used as an expressive parameter for controlling the synthe-

sizer at the rear end of the process.

In order to facilitate onset detection further, we admit two

basic assumptions; first, we assume that there is only one

acoustic event happening at each time instant and second,

that there is a minimum amount of time between two suc-

cessive onsets, which we call the Minimum Anticipation

Time and we symbolize it with tant. The parameter tant
may be used in order to disregard any detected onsets after

a period of time less than tant following the last detected

onset. This is helpful in order to avoid a “double onset”

due to ambiguities in the sound in the neighbourhood of a

strong attack. While this may result in missed detections in

the case of two rapidly played strokes, it is not a problem

in this monophonic case.

3.2 Classification approach

Let s[n] = s(nT ) denote the discrete acoustic signal, sam-

pled at a constant rate Fs = 1/T , which is input from

the soundcard. The STFT of a percussive event which is

detected at discrete time jh may be written as

Sj [k] =
N−1∑

n=0

s[jh+ n]e
−2iπnk

N , k = 0, 1, ..., N − 1 (1)

where j is the frame index, h is the hop-size (used for onset

detection) and N is the length of the signal that is used for

the STFT.

The raw data from the STFT of known acoustic events is

used in order to construct a dictionary for each class, and
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these dictionaries are to be used in order to classify un-

known events. Each element of the dictionary is built by

considering only a small subset of continuous frequency

bins of index k such that fmin ≤ kFs
N

≤ fmax, where

fmin and fmax are minimum and maximum frequency lim-

its which are the same for all classes. These frequency

limits need not span the entire frequency range of the in-

strument; it is sufficient if they span all or some part of the

frequency range of its most dominant acoustic modes. We

may now denote the K × 1 input vector associated to an

onset detected at time j as

xj = [Sj [kmin], ..., S[kmax]]
T , (2)

where kmin and kmax are the smallest and largest index

of the frequency bins that are taken into account. During

the training process the input vector is normalized to have

unity L2 norm and stored in the memory as the spectral

feature vector representative of the v-th instance of the i-
th class

ai,v =
xj

‖xj‖2
. (3)

where ‖·‖
2

denotes the L2 norm of a vector. We may now

consider all Vi different instances available from the i-th
class in order to construct the class-specific feature dictio-

nary

Φ
N
i = [ai,1,ai,2, ...,ai,Vi

]T , (4)

where N denotes the size of the STFT and therefore is rep-

resentative of the length of each feature vector in the dic-

tionary.

Observe that in the current process, the acoustic features

are complex, including both magnitude and phase informa-

tion. An alternative implementation would be to consider

only the magnitude of the frequency response and to dis-

regard the phase information. We will discriminate those

two cases by referring to complex and real feature vectors

and dictionaries respectively.

The procedure for constructing the input pattern of an un-

known acoustic event occurring at frame index j is exactly

similar. During the application phase, the input feature

vector x̂j (which is normalized to have L2 norm equal to

1) is compared with all different class instances in order to

find the class with the maximum fit as

Ij = argmaxi,v |〈ai,v, x̂j〉| , (5)

where 〈a,b〉 = a
H
b denotes the inner product between

two vectors and Ij carries the index (and optionally the

instance index) of the selected class. In other words, we

use a first-nearest neighbour (1-NN) classifier with inner

product as the similarity measure.

4. EVALUATION

4.1 Description of the objects

We aim at providing results for three different objects; an

old cassette-case made of recycled paper, a plastic bucket

(originally used as a garbage bin) and an empty bottle of

beer. From now on, we will refer to these object as the box,

the bucket and the bottle respectively. The bucket and the

box are excited with the fingers of both hands of the player

whereas the bottle is excited with the help of a thin metallic

rod.

For the box we have defined four different impact regions,

using three out of the five available surfaces. Regions 1

and 2 are shown in Figure 1(a) while subfigure (b) depicts

regions 2, 3 and 4. The box is placed in front of the user as

in subfigure (c). It comes then very natural to excite region

1 by using only the fingers of the right hand while region 4

is optimal for the fingers of the left hand. Regions 2 and 3

can be easily struck with fingers from either hand.

Figure 1. A box made of recycled paper. Impact regions 1

and 2 are shown in (a) while regions 2, 3 and 4 are shown

in (b). The placement of the microphone with respect to

the object and the general setting for playing the object is

shown in (c).

For the bucket, four different impact regions are exploited,

one on the vertical surface and three on the horizontal sur-

face (see Figure 2(a)). The optimal location for the bucket

is to place it upside-down in front of the user, as in subfig-

ure (b). Again here, it comes natural to excite region 4 with

the fingers of the left hand whereas for regions 1, 2 and 3

fingers from both hands may be used. For both the bucket

and the paper-box, the different regions are excited by any

of the index-finger or the middle-finger. The thumb, the

ring-finger and the little-finger are not used for striking the

object, but they are proved to be useful for supporting the

object during performance (preventing it from unwanted

displacements) and for stabilizing the positioning of the

hands.

For the bottle we consider three different impact regions

as shown in Figure 3(a). This setup exploits the smooth in-

crement of the cross-section of the bottle along its main

Proceedings ICMC|SMC|2014          14-20 September 2014, Athens, Greece

- 1180 -



Figure 2. A bucket made of plastic. Impact regions 1, 2, 3

and 4 are shown in (a). The placement of the microphone

and the general setting for playing the object is shown in

(b).

axis. Two pieces of carton are used on either sides of

the bottle in order to prevent unwanted displacements as

shown in subfigure (b). In all cases, the objects are lying

on a blanket which lies on the table. This was useful not

only for stabilizing the objects but also for preventing the

vibrations to be transmitted to the table.

4.2 Recording and training

Recordings took place in a relatively large room of the uni-

versity (8 x 7 x 2.5 m). A cardioid dynamic microphone

(Shure SM 58) plugged into an external USB sound card

was used for acquiring the audio data during both the train-

ing and the testing phase. The sampling rate was set at

44100 but the audio data was downsampled at 22050 Hz

for further processing.

The training data was automatically extracted from the

corresponding audio files by using the onset detection al-

gorithm; long audio files were segmented into multiple

smaller files containing a single impact sound each. For

each object and impact region, 35 to 50 instances were

recorded. For the bucket and the box, strikes from both

fingers and hands were recorded (when applicable) at each

impact region. Also, for all objects and regions, we have

tried to produce different intensity levels in order to cover

a wide dynamic range.

In order to give an impression about the duration of the

acoustic events involved in the classification task, we have

plotted one representative waveform from each object in

Figure 4. In general, we have observed that the acoustic

energy drops below 40 dB within 0.2 s after the onset for

all three objects.

4.3 Rhythmic patterns used for testing

In an attempt to decide upon the rhythmic patterns that

would be used for testing the different objects, we focused

on two important aspects; that all impact regions on each

object should be excited a more or less equal number of

times and that the testing sequences should include parts

of non-trivial rhythmic complexity. Inspired by classical

exercises for drummers, apart from a simple rhythmic pat-

tern, the bucket and the box were excited with a series of

Figure 3. An empty bottle of beer. Impact regions 1,

2, 3 are shown in (a) together with the metallic rod that

was used for hitting the object. The placement of the mi-

crophone and the general setting for playing the object is

shown in (b).
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Figure 4. From left to right, one instance of a strike on the

box, the bucket and the bottle.

“drum-rolls” and “double-strikes”. Especially in the case

of the “double-strikes”, the distance between successive

onsets was close to 30 ms and there was an evident over-

lap between adjacent events. For the bottle, apart from a

simple rhythmic pattern we played “double-stroke-rolls”,

a classic technique which exploits the natural rebound of

the drum-stick (in our case a metallic rod) in order to per-

form a second strike which rapidly follows the first one.

Successive onsets as close as 70 ms apart were produced

this way.

During the recording of the test audio files for each ob-

ject, the positions of the object and the microphone were

kept the same as during the recording of the training files

so that the acoustic conditions are the same. About 500

events were recorded for each object and the events were

manually labelled.

Proceedings ICMC|SMC|2014          14-20 September 2014, Athens, Greece

- 1181 -



4.4 Onset detection performance

It was observed that the detection performance was stable

for a wide range of different detection parameters for all

three objects. However, some of the parameters appeared

to have a significant impact on the classification perfor-

mance. It was observed for example that increment of the

hop-size h led to a significant deterioration in the clas-

sification accuracy, especially for cases corresponding to

small lengths of the analysis frame tfr. This is not sur-

prising, considering that increment of the hop-size quickly

makes it comparable to the duration of the analysis frame

tfr. The uncertainty associated to the location of the onset

causes the input feature vectors to be “misaligned” with re-

spect to the training feature vectors. As a result, we may

fail to observe a good fit and the event may be mistakenly

assigned to the wrong class. Similar cases of misalign-

ment may be observed when the threshold value Atr or

the length of the window that is used for onset detection

is different during the training phase and the testing or the

application phase. As a general rule, we propose small

hop-sizes and that the detection parameters in the testing

phase are exactly the same as the ones used in the training

phase.

The final values of the parameters associated to onset

detection, which were the same for all three objects, are

the following; a Hanning window of 3 ms duration was

used with a hop-size of 16 samples (0.73 ms at 22050 Hz).

The spectral energy measures A and B defined in subsec-

tion 3.1 were calculated over the frequency range of 800

to 6000 Hz. Thresholds Atr and Btr were set at 13 and

.033 while tant was set at 21 ms. The parameters for onset

detection were exactly the same during both the training

phase and the testing phase.

Overall, the onset detection algorithm was very accurate.

Out of 1470 true percussive events, there was 1 missed on-

set and 9 false positives. In the current phase, we haven’t

taken any measures for treating false positives. They were

simply disregarded during the calculation of the classifica-

tion scores presented in the following section.

4.5 Classification performance

The frequency limits for the construction of the spectral

feature vectors, fmin and fmax defined in section 3.2, were

free parameters in the classification process. We do not

have any sophisticated method to report for tuning these

values, although they proved to be quite crucial for the

overall performance. After a few trials, we decided to set

these values to 0 and 1200 Hz for the box and the bucket

and to 1000 and 5000 Hz for the bottle. Although the bottle

had strong modal components above this frequency limit,

we realized that there is no significant benefit by account-

ing for higher frequencies. To be noticed that, having kept

a database with the original training instances, the spectral

feature vectors corresponding to different STFT lengths

and different frequency limits of fmin and fmax could be

extracted immediately and classification scores were de-

rived instantaneously for each combination of parameters.

Classification results are shown for lengths of the analy-

sis frame of 3, 5, 7.5 and 21 ms in Table 1, assuming that a

single object with a known identity is stroked at each time.

The values outside and inside the parenthesis correspond to

the case of complex and real feature vectors respectively.

It can be seen that even with a 5 ms analysis frame, the

classification performance is above 90% for all three ob-

jects. Observe that accounting for the phase of the STFT

in the feature vectors brings a significant advantage in the

case of the box and the bucket, especially at small values of

tfr. On the contrary, classification scores are a little better

without phase information for the bottle.

tfr Box Bucket Bottle

0-1.2 kHz 0-1.2 kHz 1-5 kHz

3 ms 90% (79%) 80% (65%) 93% (93%)

5 ms 99% (89%) 91% (86%) 93% (95%)

7.5 ms 98% (96%) 93% (88%) 95% (97%)

21 ms 98% (94%) 95% (94%) 95% (99%)

Table 1. Classification scores for each object in the single-

object scenario. Values outside and inside parenthesis cor-

respond to complex and real feature vectors respectively

It should be noticed that the small size of the feature vec-

tors in combination with the low complexity of the nearest

neighbour search makes the process ideal for a real-time

application. Implemented in Matlab on a 3.4 GHz pro-

cessor, the average computation time required for classi-

fying a single event varied between 0.14 to 0.2 ms for the

case of a 3 and a 21 ms length of the analysis frame respec-

tively. This indicates that tfr is by far the most dominant

factor determining the latency of the system, although an

additional delay should be expected in accordance to the

actual size of the audio buffer that would be used in the

case of a real-time application.

We would also like to report results for the case of “multi-

ple” objects, when the identity of the object that produced

the event is not known and must be inferred from all 11

possible classes. In order to have a common basis for

comparing among the three different objects, the feature

vectors were here constructed as follows; we considered

a wide frequency range from 0 to 5000 Hz for all three

objects. The part of the feature vectors corresponding to

frequencies from 0 to 1200 Hz was complex (magnitude

and phase) while the remaining part was real (magnitude

only). The test audio files and the onset detection param-

eters used were exactly the same as the ones used for the

single object scenario. Classification scores are shown in

Table 2.

tfr Box Bucket Bottle

0-5 kHz 0-5 kHz 0-5 kHz

3 ms 95% 84% 86%

5 ms 91% 91% 96%

7.5 ms 94% 93% 96%

21 ms 97% 95% 97%

Table 2. Classification scores for each object in the multi-

object scenario.
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In general, one would expect a deterioration in the clas-

sification scores but we see that for some cases the results

are improved. Observe for example that the classification

scores for 3 ms are better in the case of the box and the

bucket in comparison to Table 1. This is a consequence of

adding more high-frequency information into the feature

vectors. It should be mentioned that none of the events

originating from the bottle were miss-classified as belong-

ing to the box or the bucket and vice-versa. This proves

that the deterioration observed for the bottle at 3 ms (-7%)

is the result of adding low frequency information into the

feature vectors. Nevertheless, this gives a 1% advantage at

the longer analysis frame-lengths.

In several cases, events originating from the box were

mistakenly assigned to the bucket, although the opposite

case was not so common. At 5 ms for example, 56 out

of the 632 events recorded from the box were assigned to

the bucket and this confusion was the main reason for the

score dropping at 91% from 99%. At higher frame-lengths

this confusion became much more rare.

As expected, the average computation time required for

classifying a single event was increased in the multi-object

scenario. In the current approach the nearest neighbour is

searched within all instances of all 11 classes. Even in this

exhaustive approach, we may report computation times of

0.25 and 0.35 ms for the case of a 3 and a 21 ms analysis

frame-length respectively.

5. PERSPECTIVE

The ability to infer the identity of the region of impact on

a simple object may be exploited in order to turn the ob-

ject into an accurate control interface with application in a

variety of HCI systems. In this paper, detection and clas-

sification are still implemented offline, but the presented

approach may be easily extended towards a stand-alone

real-time application. It is one of our highest priorities to

implement this step and to build a platform for using the

detection and classification decisions as the input stream

for controlling a real-time percussive synthesizer, turning

thus the whole system into a low-cost real-time percussion

controller.

In many aspects, the method used in this work is rather

naive and we feel that, with moderate effort, both the speed

and the accuracy of the system can be improved. We are

currently investigating the use of different types of features

and distance measures as well as techniques for reducing

the number of class instances in each dictionary. We also

foresee an interesting perspective in unifying the onset de-

tection and classification process, exploiting thus the avail-

able acoustic models for discriminating between false and

true onsets. An additional topic of concern is the possibil-

ity to acquire knowledge on-the-fly, i.e. to allow the online

adaptation of the dictionaries, by selectively adding new

impact patterns as they occur during the application phase,

or by updating the already existing ones.

An additional research priority is to examine how well

the process behaves under less ideal conditions and equip-

ment than those in the presented experiments. How much

does the process degrade when using lower quality sensors

and recording formats, such as those found in most mobile

devices? Also, how robust is the application to changes in

the position of the object or the microphone and how is this

related to the type of the feature vectors, the classification

method and the adaptation method which is used?

While the pure artistic value of the natural sounds of the

three objects used in this experiment is relatively poor in

comparison to real percussive instruments, they prove to be

advantageous as control interfaces, mainly due to the rapid

decay that characterizes them. On the other hand, there

is in our opinion still little effort focused in the topic of

instantaneous classification of real percussive instruments.

As already said, it is our intuition that acoustic structures

originating from real percussive instruments will be a more

challenging case for instantaneous classification tasks, be-

cause of the longer acoustic tails involved as well as be-

cause of the existence of simultaneous events (i.e hi-hats

and bass-drum hits occurring at the same time). However,

there is a large amount of tools which may assist in this

case; source separation may be used in order to separate

an attack segment from the tail of the previous hit and sen-

sor arrays providing spatial information may assist further

in both discriminating and separating the acoustic signals

according to their locations or directions of arrival. A natu-

ral consequence of the last ideas is to treat the classification

task in terms of a Multiple-Input Multiple-Output (MIMO)

problem, where information from multiple acoustic sen-

sors is exploited in order to discriminate between multi-

ple classes. This scenario is also particularly appealing to

the classical multichannel setup which is used in pop and

rock music for sound reinforcement and recording applica-

tions, where many microphones are distributed around the

drumset. In this direction, the application may be seen as a

non-invasive sensing solution for replacing classical drum

triggers, whose installation is elaborate and which some

times affect the acoustic behavior of the instrument.

Instantaneous detection and classification of percussive

events is to our opinion a prerequisite towards a more fasci-

nating and interdisciplinary research topic which considers

the extension of the capabilities of classical percussive in-

struments and their transformation into hyper-instruments.

Hyper-instruments is a concept developed by Tod Machover

[16] in which real physical objects are fitted with electronic

sensors as gestural acquisition devices. The gestures are

transformed into control messages to a computer for pro-

ducing a sound to accompany the real physical instrument

or for performing some other predefined action. Examples

of these ideas in the family of percussive instruments may

be found in the works of Mann et al. [17] and Trail et

al. [18]. They both illustrate a high-level gesture control

interface, but their implementation relies on the use of spe-

cial sensor devices (position sensors, cameras, radars etc.)

which are usually not in the possession of common mu-

sicians. In this regard, the use of solely acoustic sensors

as the gesture acquisition device carries the potential for

reducing the cost of implementation and for achieving the

vision of a generic solution, which would enable the users

to train the system to respond to their already disposable

instruments and audio equipment.
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6. CONCLUSIONS

Inferring percussive gestures from acoustic data in real-

time may be seen as the core process for designing many

fascinating applications related to musical control inter-

faces and HCI systems in general. In this paper, we have

used a simple instance-based classification technique in or-

der to train the system to recognize the differences in the

resonant behavior of one or more objects as these objects

are struck by the user at different locations. Simple spectral

features of the monophonic acoustic signal provide suffi-

cient discriminatory information for achieving classifica-

tion rates above 90%, with a system response of 5 ms or

even less.

The primary author occasionally uses the three objects

presented in this paper for programming drum tracks which

reproduce the rhythmic section in his personal music com-

positions. The onset detection and classification results

are transformed into a MIDI file which is then imported

into a Digital Audio Workstation for controlling a sample-

based percussive synthesizer. He finds it much more nat-

ural to interact with these objects than with a piano-like

MIDI controller that he has in his possession. The box

and the bucket are very convenient for programming clas-

sical membranophones such as bass-drums, snare-drums

and toms, while the bottle is very suitable for programming

hi-hats, rides and cymbals in general.
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