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ABSTRACT

We propose a novel set of chroma-based audio features in-

spired by pitch class set theory and show their utility for

style analysis of classical music by using them to clas-

sify recordings into historical periods. Musicologists have

long studied how composers’ styles develop and influence

each other, but usually based on manual analyses of the

score or, more recently, automatic analyses on symbolic

data, both largely independent from timbre. Here, we in-

vestigate whether such musical style analyses can be re-

alised using audio features. Based on chroma, our features

describe the use of intervals and triads on multiple time

scales. To test the efficacy of this approach we use a 1600

track balanced corpus that covers the Baroque, Classical,

Romantic and Modern eras, and calculate features based

on four different chroma extractors and several parameter

configurations. Using Linear Discriminant Analysis, our

features allow for a visual separation of the four eras that

is invariant to timbre. Classification using Support Vec-

tor Machines shows that a high era classification accuracy

can be achieved despite strong timbral variation (piano vs.

orchestra) within eras. Under the optimal parameter con-

figuration, the classifier achieves accuracies of 82.5%.

1. INTRODUCTION

The analysis of musical style is a major task in musicol-

ogy. For the investigation of Western classical music, the

most important research topics are the life and works of the

composers, as well as their relationships and mutual influ-

ences. Finding similarities and trends among composers

living at the same time leads to a categorization into his-

torical periods comprising musical works composed un-

der similar artistic premises [1]. In Music Information Re-

trieval (MIR), the classification of music data into genres

is a widely explored task [2]. Some work has been done

to obtain a finer resolution of subgenres for Jazz, Pop, and

Rock [3] as well as for classifying music into global cul-

tural areas [4]. For such tasks, features describing the tim-

bral properties of the music such as instrumentation, play-

ing and singing style, have been applied successfully since

short fragments of music have been shown sufficient to

capture the typical sound of a genre.
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In contrast, the subdivision of the genre “Classical” has

been addressed sparsely for audio data. However, passion-

ate classical music listeners are usually able to identify the

historical period or the composer of a work after a few sec-

onds. Since this holds independently of the instrumenta-

tion or genre, there must be internal structures in the music

that make a Mozart piece sound like Mozart, be it a pi-

ano sonata, a string quartet, or a symphony. We show that

such structures can be found in the dimensions of tonality,

harmony, and melody. Obviously, timbral features will not

be able to describe such properties. Therefore, we present

a set of timbre-invariant features and evaluate them on a

subgenre classification task for classical music audio col-

lections.

Musicologists often prefer the detailed view of single com-

posers or even single works to observe very subtle stylistic

differences. They find a great individuality in the style of

single composers, together with substantial evolutions and

breaks within their oeuvre. Nonetheless, one can observe

developmental lines in music history, as well as the break-

ing of such lines. This is why a classification into eras can

be helpful as a first step for analysis, which may be fol-

lowed by a closer look at individual stylistic tendencies [5,

6]. Most commonly, the classical repertoire, which domi-

nates Western concert halls and classic radio programmes,

is divided into historical periods (“eras”). This catego-

rization is a simplification but can provide “a reasonably

consistent basis for discussion” [1]. On these grounds, we

evaluate our features on the rather superficial problem of

classifying music into the periods Baroque, Classical, Ro-

mantic, and Modern. Treating this task with success is a

first step towards more detailed classification scenarios.

The ideal source for studying composer-specific proper-

ties is the musical score since it contains that fraction of

a musical performance which is created and controlled by

the composers themselves. Approaching scores or sym-

bolic data, several studies have been published: McKay

and Fujinaga have performed hierarchical classification into

root and leaf genres using high-level musical features on

MIDI data [7]. As classical subgenres, they have consid-

ered the periods Baroque, Romantic, and Modern. In [8],

chord profiles have been used for composer style identi-

fication. A similar task has been performed in [9] rely-

ing on high level interval-based features. Van Kranenburg

has evaluated different composer identification tasks on

score [10] and MIDI data [11] using interval- and pitch-

related features as style markers.

Perttu studied the increasing chromaticism in Western

music from the year 1600 to 1900 on score data [12] while
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Ventura used symbolic music text representations to iden-

tify historical periods from melodic properties [13]. An-

other melody-based approach has been tested in a study

based on the Peachnote Corpus [14] containing statistics of

melodic intervals obtained via Optical Character Recogni-

tion from open-access graphical scores. On that data, Ro-

driguez Zivic et al. [15] performed an unsupervised clus-

tering into compositional styles obtaining a division into

the eras Baroque, Classical, Romantic, and Modern. Hon-

ingh’s approach [16, 17] is based on pitch class profiles

which are motivated by recent musicological theories and

relate to interval categories. The evaluation was performed

on several clustering and classification tasks on MIDI rep-

resentations of individual pieces. De Leon and Iñesta

tested a pattern recognition approach for style identifica-

tion on MIDI data of monophonic melodies [18].

Such high-level representations are not available in many

analysis scenarios. For automatic classification tasks on

large audio archives as well as for music search and recom-

mendation tasks, algorithms capable of directly handling

audio data are necessary. To extract tonal information from

audio, chroma features have been used widely. For exam-

ple, Müller et al. [19] have made use of their capability for

audio matching between orchestral and piano versions of

the same piece of music. On that account, we build our

system on chroma or pitch class features. 1

The main contributions of this work are the introduction

of novel template-based features computed from chroma

and the evaluation of their suitability for describing musi-

cal style. We test four different chroma feature types as

basis features and investigate the time-scale dependence of

the features. For evaluation, we present a new large cross-

era data set of classical music audio recordings. On this

data set, we show different visualizations and perform clas-

sification experiments on several 4-class problems. In par-

ticular, we examine the timbre invariance of the features.

To evaluate this aspect, we investigate piano music as well

as orchestral music and compare the results of different

configurations of that data.

2. DATABASE

For our classification task, we built a 1600 track corpus of

classical music audio recordings compressed in the MP3

format. The main source for the recordings is a large data

set of recordings released by the label NAXOS. We consid-

ered music clearly assignable to the four historical periods

Baroque, Classical, Romantic, and Modern.

To evaluate the influence of timbre and scoring, we took

into account solo piano music as well as orchestral music.

For each period, we collected 200 tracks each of piano and

orchestra. To avoid the system learning timbral particu-

liarities, we only selected Baroque piano music performed

on the modern grand piano (no harpsichord recordings),

1 We know that many harmonic properties cannot be derived this way:
In a chroma representation, the separation of the voices is not possible.
Therefore, voice leading information is lost. Additionally, characteristics
of harmonic intervals depend strongly on the pitch order. For example,
a note in perfect fourth distance above the bass note was treated as a
dissonance over centuries of Western music whereas the same interval
appearing between the upper voices was considered consonant.

and the orchestral data neither includes works featuring

voices nor solo concertos. To obtain a subgenre classica-

tion rather than capturing individual composer styles, ev-

ery category contains music from a minimum of five dif-

ferent composers from three different countries.

Since we want to perform a baseline experiment, we did

not include composers whose style can be described as ly-

ing between two of the periods. 2 To make sure that we

do not classify properties other than style-related ones, we

tried to include a certain amount of works by the single

composers, considering different musical forms (Sonatas,

Variations, Suites, Symphonies, Symphonic poems, Over-

tures, and many more) as well as fast and slow move-

ment types (head movements, minuets, etc.). The keys and

modes (major/minor) of the pieces are mixed arbitrarily.

The composers and their countries are listed in Table 1.

3. METHOD

We perform a common Machine Learning based classifi-

cation experiment using a Support Vector Machine (SVM)

classifier. First, we obtain the audio signals by decoding

the MP3 data. Based on this representation, we calcu-

late four different types of chroma features which have

been tested successfully on chord recognition tasks (Sec-

tion 3.1). To evaluate the influence of time scales and tem-

poral resolution, we compute different smoothed represen-

tations of the chroma (Section 3.2). Finally, we calculate a

set of interval- and chord-related mid-level features which

will be used as input for our classifier (Section 3.3).

3.1 Basis Features

Since early studies have shown the suitability of chroma

features for representing tonal characteristics [20, 21], a

number of different chroma feature extraction methods

have been presented and evaluated. The basic idea of

chroma is the mapping of the spectrogram bins into a se-

ries of 12-dimensional vectors ci representing the energy

of the pitch-classes independent of the octave:

(
ci1, ci2, . . . , c

i
12

)
=̂ (C, C♯, . . . , B) . (1)

cik denotes the k-th element of the i-th chroma vector.

One of the fundamental difficulties of the chroma repre-

sentation is the handling of the partials: Each note played

by an acoustical instrument generates a spectrum showing

energy not only at the fundamental frequency but also at

the integer multiples of this frequency. While the octave-

related harmonics do not cause problems in a chroma rep-

resentation, harmonics corresponding to other pitches such

as the upper fifths may lead to wrong musical interpreta-

tions. Several chroma extraction methods try to cope with

this issue [22–24]. On this account, we are considering

four different chroma computation techniques to test the

influence of this processing step:

2 For example, no works from Beethoven or Schubert were selected
because these composers show influences from both Classical and Ro-
mantic styles.
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Era Scoring Composers Countries

Baroque Piano Bach, J. S.; Couperin, F.; Giustini, L.; Platti, G. B.; Rameau, J.-P. France, Germany, Italy

Orchestra Albinoni, T.; Bach, J. S.; Corelli, A.; Handel, G. F.; Lully, J.-B.; Purcell, H.;
Rameau, J.-P.; Vivaldi, A.

England, France, Germany, Italy

Classical Piano Cimarosa, D.; Clementi, M.; Dussek, J. L.; Haydn, J.; Mozart, W. A. Austria, Czechia, England, Italy

Orchestra Bach, J. C.; Boccherini, L. R.; Haydn, J. M.; Haydn, J.; Mozart, W. A.;
Pleyel, I. J.; Salieri, A.

Austria, England, Germany, Italy

Romantic Piano Brahms, J.; Chopin, F.; Faure, G.; Grieg, E.; Liszt, F.; Mendelssohn-
Bartholdy, F.; Schumann, C.; Schumann, R.; Tchaikovsky, P. I.

France, Germany, Hungary, Norway, Poland,
Russia

Orchestra Berlioz, H.; Borodin, A.; Brahms, J.; Bruckner, A.; Dvořak, A.;
Grieg, E.; Liszt, F.; Mendelssohn-Bartholdy, F.; Mussorgsky, M.;
Rimsky-Korsakov, N.; Saint-Saëns, C.; Schumann, R.; Smetana, B.;
Tchaikovsky, P. I.; Verdi, G.; Wagner, R.

Austria, Czechia, France, Germany, Hungary,
Italy, Norway, Russia, USA

Modern Piano Bartók, B.; Berg, A.; Boulez, P.; Hindemith, P.; Messiaen, O.; Milhaud, D.;
Prokofiev, S.; Schoenberg, A.; Shostakovich, D., Stravinsky, I.; Webern, A.

Austria, France, Germany, Hungary, Russia,
USA

Orchestra Antheil, G.; Bartók, B.; Berg, A.; Britten, B.; Hindemith, P.; Ives, C. E.;
Messiaen, O.; Prokofiev, S.; Schoenberg, A.; Shostakovich, D.; Stravinsky, I.;
Varese, E.; Webern, A.; Weill, K.

Austria, England, France, Germany, Hungary,
Russia, USA

Table 1: Composers contained in the data set, and their countries.

• CP chroma: Müller and Ewert [19, 25] presented a

chroma extraction method using a multirate pitch fil-

ter bank [26]. We use the basic Chroma Pitch (CP)

as baseline representation. The code was published

in the Chroma Toolbox package [26].

• CLP chroma: Jiang et al. [27] tested several filter-

bank-based chroma features on a chord recognition

task. They found a significant improvement when

using logarithmic compression before applying the

octave mapping. We test the Chroma Logarithmic

Pitch (CLP) with compression parameter η = 1000
performing best in this evaluation.

• EPCP chroma: A different chord labeler was tested

on a number of chroma feature types in [28]. The

Enhanced Pitch Class Profiles (EPCP) by Lee [23]

came out best in this study. They used an iterative

approach called harmonic product spectrum (HPS).

We use three HPS iterations in our work.

• NNLS chroma: In [24], an approximate transcrip-

tion method using a Non-Negative Least Squares

(NNLS) algorithm was presented for chroma extrac-

tion. The features were used as input to a high-level

model for chord transcription which was tested on

the MIREX Chord Detection task with good results.

The code was published as “Vamp” plugin. 3

We computed all chroma feature representations with an

initial feature rate of 10 Hz using a step size of 4410 at

an audio sample rate of 44100 Hz. The features are nor-

malized to the Euclidean norm (ℓ2 norm) to eliminate the

influence of dynamics.

3.2 Multi-Scale Feature Smoothing

Tonal characteristics of music can be regarded at various

time scales. On a rough scale, local keys and modulations

play an important role. Regarding a finer level, chords and

3 http://isophonics.net/nnls-chroma

feature type

te
m

p
o

ra
l

re
so

lu
ti

o
n

CPglobal CLPglobal EPCPglobal NNLSglobal

CP200
100 CLP200

100 EPCP200
100 NNLS200

100

CP100
20 CLP100

20 EPCP100
20 NNLS100

20

CP20
10 CLP20

10 EPCP20
10 NNLS20

10

CP10
5 CLP10

5 EPCP10
5 NNLS10

5

CP4
2 CLP4

2 EPCP4
2 NNLS4

2

CPlocal CLPlocal EPCPlocal NNLSlocal

Table 2: Feature type [ Chroma ]wd for different time scales

specified by the smoothing parameters w and d.

chord changes provide more detailed information. Finally,

considering the melodic and voice leading properties will

give an insight into the relationship of the pitches to the

underlying chords. These layers of tonal characteristic are

crucial for musical style recognition: Analyzing a piece of

dodecaphonic music, we will find a complex tonality mak-

ing use of most of the chromatic pitches on a fine scale as

well as on a global scale. A Romantic symphony may look

similarly complex globally due to numerous modulations

while being built on simple harmony on a fine level.

Therefore, we have to consider different temporal resolu-

tions for the computation of our classification features. To

do this, we start with the 10 Hz chroma features introduced

in Section 3.1 and apply a feature smoothing with differ-

ent resolutions. We use the approach introduced in [21]

for the CENS features with smoothing window length w

and downsampling factor d given as numbers of frames.

The smoothing procedure is part of the MATLAB Chroma

Toolbox [26]. After the smoothing, the feature frames are

normalized by the ℓ2 norm again. Together with the local

10 Hz features and global chroma statistics, we have seven

different temporal resolutions (Table 2).

3.3 Classification Features

Relying on the chroma feature types listed in Table 2, we

then compute semantic mid-level features describing the
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Cat. Interval Dist. semitones

PC1 minor second / major seventh 1 / 11

PC2 major second / minor seventh 2 / 10

PC3 minor third / major sixth 3 / 9

PC4 major third / minor sixth 4 / 8

PC5 perfect fourth / perfect fifth 5 / 7

PC6 tritone / diminished fifth 6

Table 3: Pitch Class Set Categories PCa, their characteris-

tic intervals, and the interval distance in semitones.

tonal content of the audio data at several time scales. Since

we do not want our features to depend on the global or

local key, these features have to be invariant under cyclic

shifts of the chroma vector. Motivated by music theory,

we start with simple binary templates modeling the interval

and chord content of the music. Inspired by the Pitch Class

Set Theory, Honigh and Bod [16,17] performed classifica-

tion and tonal analysis experiments on MIDI data which

showed that pitch class sets can be valuable style mark-

ers. A pitch class (PC) set is characterized by its predomi-

nant interval class (Table 3). From these classes, so-called

prototypes with different numbers of notes can be built.

The occurences of these categories are used as classifica-

tion features.

Since in the chroma vector the octave information is

missing, we cannot discriminate between the intervals and

their complements. Thus, the six interval categories re-

lated to PC1 . . . PC6 are the only information left. On

every chroma vector ci (see Equation 1), we compute a

score for the joint appearance of two chroma values re-

lated by the respective interval class by multiplying their

values. For example, for the feature F5 related to the per-

fect fourth/fifth (PC5), we multiply the C chroma with the

F chroma (distance of 5 semitones):

F i
5,1 = ci1 · c

i
1+5 (2)

We are interested only in the type of the interval, and not in

the specific pitches. Therefore, we want to equally weight

all keys and chords and sum over all cyclic shifts:

F i
5 =

12∑

m=1

F i
5,m =

12∑

m=1

cim · ci1+(m+5−1)mod12 (3)

Finally, we sum over all chroma frames i and divide by the

total number of frames N to obtain the average likelihood

of this interval on the given time resolution:

F5 =
1

N

N∑

i=1

F i
5 (4)

We can generalize this expression using binary templates

T(a) of exponents for the different interval classes PCa:

F(a) =
1

N

N∑

i=1




12∑

m=1

1+(m+11)mod12∏

p=m

(
cip
)T (a)

p


 (5)

with the interval templates

T(1) = (1 1 0 0 0 0 0 0 0 0 0 0)

T(2) = (1 0 1 0 0 0 0 0 0 0 0 0)

T(3) = (1 0 0 1 0 0 0 0 0 0 0 0)

T(4) = (1 0 0 0 1 0 0 0 0 0 0 0)

T(5) = (1 0 0 0 0 1 0 0 0 0 0 0)

T(6) = (1 0 0 0 0 0 1 0 0 0 0 0). (6)

This procedure can easily be extended to sets with three

or more notes. As the most basic harmonic vocabulary of

Western tonality, we considered the triad types Major, Mi-

nor, Diminished, and Augmented:

T(7) = (1 0 0 0 1 0 0 1 0 0 0 0)

T(8) = (1 0 0 1 0 0 0 1 0 0 0 0)

T(9) = (1 0 0 1 0 0 1 0 0 0 0 0)

T(10) = (1 0 0 0 1 0 0 0 1 0 0 0). (7)

Note that also the triad inversions are considered by this

approach. All of the template-based features F1 . . . F10 are

calculated for every chroma feature type of Table 2 result-

ing in 10× 7× 4 = 280 different features per track.

4. RESULTS

4.1 Visualization

To visualize the discriminative power of the proposed fea-

tures, we apply a dimensional reduction technique known

as Fisher transformation or Linear Discrimant Analysis

(LDA). This supervised decomposition reduces the dimen-

sions of the feature space in such a way that the classes

Baroque, Classical, Romantic, and Modern are optimally

separated [29]. The procedure has been used for a similar

task in [11]. The results for the full data set are shown in

Figure 1, and the visualizations of the piano and orchestra

data can be seen individually in Figure 2. A rough sepa-

ration for the full data seems to be possible with this type

of feature; the scenarios considering piano or orchestral

music only show slightly better separation of classes. The

clustering procedure groups the classes in accordance with

their historical ordering. To a great extent, overlapping re-

gions only occur between neighbouring periods.

4.2 Classification

To measure the features’ performance for the 4-class era

classification problem, we conduct experiments using a

standard Support Vector Machine (SVM) algorithm imple-

mented in the LIBSVM library [30]. We are making use

of a Radial Basis Kernel Function (RBF kernel) with stan-

dard parameters as suggested in [30] and perform a 10-fold

cross validation (CV) to study the individual features’ in-

fluence on the classification performance. All classifica-

tion experiments are conducted for five configurations of

the data performing classification on (1) the Full data set,

(2) the Piano data only, and (3) the Orchestra data only,
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Figure 2: LDA visualization of the data subsets.
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Figure 1: LDA visualization for the full data set.

as well as a 2-fold CV (4) training on the piano and eval-

uating on the orchestra data P/O and (5) vice versa O/P.

The latter two configurations serve to test our hypothesis

of invariance against orchestration and timbre.

First, we test the influence of the basis feature type and

perform a classification using all templates and time scales

(70 features) for each of the chroma types. The results are

shown in Table 4. Compared to the simplest chroma ap-

proach (CP) resulting in 63.1% accuracy on the full data

set, the enhancement of weaker components via a loga-

rithmic compression (CLP) does not improve the classi-

fication performance (63.1%) except for a little increase

on the orchestral data. This is in contrast to the results

of [27] where this procedure improved the performance of

a chord labeler. The consideration of the harmonics leads

to a weak improvement in the case of the EPCP features

(64.7%), whereas the NNLS features show a better perfor-

mance of 79.8% accuracy reaching almost the result of all

chroma feature types combined (81.9%). The reasons for

this substantial difference have to be examined in detail in

the future. Due to this result, we choose the NNLS chroma

as basis feature in the following. Interestingly, the algo-

rithm performs better on the orchestral data compared to

Full Piano Orch P/O O/P

CP 63.1 % 61.0 % 65.4 % 46.4 % 48.8 %

CLP 63.1 % 60.6 % 67.6 % 48.9 % 37.5 %

EPCP 64.7 % 62.3 % 69.3 % 52.0 % 41.9 %

NNLS 79.8 % 79.5 % 84.9 % 65.6 % 50.5 %

all 81.9 % 81.8 % 86.5 % 64.5 % 55.6 %

Table 4: SVM classification accuracy for the different

types of basis chroma features in a 10-fold (Full, Piano,

Orch) and 2-fold (P/O, O/P) cross validation.

the piano data for all feature types. This may be a hint

to the fact that composers showed a higher degree of indi-

viduality when writing piano music. Another explanation

could be the existence of remaining timbral information or

peculiarities of the instrumentation in the chroma, which

are used by the classifier to determine the era.

To understand the influence of the different time scales,

we performed two studies for each of the seven temporal

resolutions in Table 2, once (a) using only the respective

temporal resolution (10 features) and once (b) leaving out

the respective time scale (60 features). The results shown

in Figure 3 confirm our assumption that for a powerful

classification more than one time scale is needed. Only

relying on the global scale leads to bad results since a 12-

dimensional global chroma statistics cannot be represen-

tative for the tonal characteristics of the music. Nonethe-

less, also the local and fine scales alone are not sufficient

for a good classification either. Leaving out one of the

medium resolutions only slightly affects the performance.

Thus, we confine ourselves to use only four different time

scales for our final experiments, while keeping the variety

of different resolutions including global and local scale:

NNLSglobal, NNLS200
100, NNLS10

5 , and NNLSlocal.

On these four temporal resolutions of the NNLS chroma,

we test the performance’s dependence on the type of the

templates. To do this, we first use the two-part interval

templates only (6× 4 = 24 features, see Equation 6) com-

pared to using the three-part triad templates (4 × 4 = 16
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Figure 3: Classification accuracy for different temporal resolutions.

Full Piano Orch P/O O/P

Intervals 68.7 % 65.4 % 75.6 % 60.0 % 41.5 %

Triads 64.3 % 60.6 % 75.3 % 60.1 % 46.3 %

all 75.1 % 71.1 % 80.9 % 69.6 % 45.1 %

Table 5: SVM classification accuracy (10-fold CV) for the

different template types on 4 selected temporal resolutions.

features, Equation 7). The results are listed in Table 5. The

interval templates are performing slightly better than the

triads. However, considering all template types leads to

the best results. This may be seen as a motivation to test

advanced templates modeling more complex chords. In-

terestingly, the triad templates show a higher capability to

generalize in the cross-instrumentation test.

Keeping this 40-dimensional feature space (4 temporal

resolutions × 10 templates), we finally test if the dimen-

sional reduction technique used for visualization in Sec-

tion 4.1 improves the classification. To do this, we cal-

culate the decomposition matrix on the training folds and

multiply the feature vectors of the test data to this matrix

before applying the SVM classifier. Table 6 shows the re-

sults for different numbers of dimensions remaining. As

we expect for a 4-class problem, the ideal number of fea-

ture dimensions after the LDA is 3. In total, classification

performance only slightly improves compared to the usage

of the full feature space. The cross-instrumentation task

fails completely when using LDA. The reason for that may

be the preference of different features for the two data sets.

The most important dimensions for separating piano music

seem to be different from those separating orchestral eras.

Nevertheless, there must be features capable of separating

both of them well, otherwise classification of the Full set

would lead to worse results.

For the previous experiments, the parameters c and γ in

the RBF Kernel of the SVM classifier have been fixed to

standard values. To examine the final classification perfor-

mance of our system, we conduct a three-stage grid search

on these two parameters to optimize the classifier (search

area as suggested in [30]). To this, the data set is split into

training and test set with equal numbers of classes in each

Full Piano Orch P/O O/P

5-dim 78.1 % 77.9 % 84.4 % 17.6 % 25.0 %

4-dim 77.5 % 78.5 % 84.1 % 17.1 % 25.0 %

3-dim 78.5 % 78.5 % 84.5 % 15.9 % 25.0 %

2-dim 68.3 % 68.0 % 82.5 % 7.6 % 25.0 %

1-dim 60.9 % 54.6 % 67.5 % 25.0 % 25.0 %

no red. 75.1 % 71.1 % 80.9 % 69.6 % 45.1 %

Table 6: SVM classification accuracy (10-fold CV) includ-

ing a reduction to a different number of dimensions.

Full Piano Orch P/O O/P

Fold 1 83.4 % 83.0 % 87.8 % 55.8 %

Fold 2 81.6 % 82.5 % 86.3 % 58.0 %

Comb. 82.5 % 82.8 % 87.0 % 56.9 %

Table 7: SVM classification accuracy of the grid search.

For the last two columns, the folds 1 and 2 are identical to

the piano and orchestra part of the data, respectively.

fold (Stratified Cross Validation). On the training fold, the

best parameters are selected in another 5-fold cross valida-

tion. We measure the classifier’s performance with these

parameters on the test set and repeat the procedure com-

muting training and test set. The final results are shown in

Table 7, and the confusion matrices for the three sets are

displayed in Table 8. The averaged confusion matrix for

the cross instrumentation experiment (train/test with either

piano or orchestra data) is shown in Table 9. Applying a

grid search improves performance from 75.1% to 82.5%.

4.3 Discussion and Outlook

The presented results show that our chroma-based features

are able to discriminate classical music styles. The hypoth-

esis of timbre invariance can be verified since the classfi-

cation on the full data set leads to similar results as the

individual piano or orchestra1 classification. Inspection

of the confusion matrices suggests that the best recogni-

tion rates can be found for the Modern style. This is no

suprise because our “Modern” data contains mostly atonal
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Bar Class Rom Mod

Baroque .85 .10 .05 .01

Classical .11 .81 .09 .00

Romantic .06 .07 .76 .11

Modern .02 .01 .09 .89

(a) Full data set.

Bar Class Rom Mod

Baroque .82 .12 .06 .01

Classical .09 .84 .08 .00

Romantic .03 .13 .80 .06

Modern .03 .00 .12 .86

(b) Piano data set.

Bar Class Rom Mod

Baroque .83 .11 .05 .01

Classical .09 .84 .07 .00

Romantic .06 .03 .89 .03

Modern .01 .00 .07 .93

(c) Orchestra data set.

Table 8: Confusion matrices of the grid search classifica-

tion on the different data sets.

Bar Class Rom Mod

Baroque .32 .22 .25 .22

Classical .19 .49 .29 .03

Romantic .11 .04 .58 .28

Modern .03 .00 .09 .89

Table 9: Averaged confusion matrix of the grid search

classification in the cross instrumentation test (P/O and

O/P).

music and music with a very advanced tonality so that the

harmonic material does not consist of triads and common

chords anymore. The worst rates are found for the Ro-

mantic period. This can have a couple of reasons: Firstly,

the transition from the Classical to the Romantic style hap-

pened gradually so that these styles may be more similar

than other neighbouring eras [1]. On the other hand, late

Romantic composers used historical citations and elements

from older styles—including also the Baroque style—as an

artistic means. Lastly, late Romantic music anticipates the

movement towards complex tonality in the 20th century.

In all experiments, the orchestral data can be classified

better than the piano or the combined data. We suggest

two explanations for this: firstly, the style characteristics

could be more pronounced for orchestral music. This could

arise from the fact that orchestral music is dedicated to a

larger audience and thus may be less complex than piano

music. Secondly, our features could still contain timbral

information which may be more useful when classifiying

on a purely orchestral data set.

There are several open questions that should be addressed

in further work. We aim to look into the data in more de-

tail as well as develop more elaborate features to further

improve classification performance. To underline the suit-

ability of timbre-invariant features for the analysis of mu-

sical styles, the method should be tested against a classifi-

cation approach using standard features such as Mel Fre-

quency Cepstral Coefficients. The templates used in this

work describe interval and basic triad types. Since more

complex chords such as seventh or ninth chords can rep-

resent style characteristics, templates with more non-zero

entries should be included. Furthermore, templates model-

ing voice leading phenomena such as suspended chords or

characteristic dissonances should be tested.

Concerning the data, experiments with finer “stylistic res-

olution” such as the classification of sub-eras (Early Ro-

manticism, Late Romanticism, etc.) would be interest-

ing contributions. This includes the composer identifica-

tion task, or even beyond that: Can we see that the early

Beethoven sonatas are closer to the Classical area than the

later sonatas, which are “more Romantic”?

5. CONCLUSIONS

In this work, we proposed chroma-based features which

quantify the occurrence of interval and triad types at dif-

ferent temporal resolutions. Our approach links to more

recent ideas in musicology such as the Pitch Class Set

Theory. As basis features, we tested four chroma extrac-

tion methods (three of them are public code). After a

multi-scale feature smoothing, we obtained seven different

temporal resolutions. Based on these features, we com-

puted ten classification features making use of a template-

matching strategy for intervals and triads.

To test the hypotheses of stylistic differences and timbre

invariance, we compiled a 1600 track data set containing

piano and orchestral music from composers who can be

assigned clearly to one of the four historical periods Ba-

roque, Classical, Romantic, and Modern. Using Linear

Discrimant Analysis, we showed the features’ capability

for separating these classes and for producing nice visual-

izations. We performed several classification experiments

using a Support Vector Machine classifier. In these studies,

we evaluated each of the different feature extraction steps.

As basis feature, the Nonnegative Least Squares chroma

worked best with our features (79.8%), reaching almost

the result of using all basis features combined (81.9%).

We showed that for a proper classification, more than one

time scale is needed and finally considered four temporal

resolutions. The test of different templates resulted in a

better performance when using interval features (68.7%)

rather than triad templates (64.3%), but best performance

was obtained with all templates together (75.1%). Com-

bining the most successful features, we performed a grid

search to optimize the classifier (82.5%). The results on

the orchestra data outperformed the full results by up to 5
percentage points, the piano results were similar or worse

than the full data classification. Separating training and test

fold between piano and orchestra yielded worse accuracies

but still above chance level.

These results indicate that classical music style can be

analyzed directly from audio recordings. Apart from the

difficulties of the categorization into four eras, the features

are able to describe the main stylistic differences of these

classes while showing a high degree of timbre invariance.

In further studies, we will test the method on tasks with
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finer resolution such as sub-era and composer classifica-

tion. Together with the proposed features, modeling more

complex harmonic properties such as tonal complexity and

chord sequences will allow us to gain insights into fur-

ther aspects of musical style and influences between com-

posers.
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