
A High-Level Review of Mappings in Musical iOS Applications

Thor Kell

IDMIL / CIRMMT, McGill University

thor.kell@mail.mcgill.ca

Marcelo M. Wanderley

IDMIL / CIRMMT, McGill University

marcelo.wanderley@mcgill.ca

ABSTRACT

We present a high-level review of mappings in musical

iOS applications. All of the 38,750 music applications

on the iOS store were reviewed and classified, using their

title and descriptive text. Fifty music-making categories

were found, along with sixteen non-music-making cate-

gories. Summarized mappings for each music-making cat-

egory were defined and enumerated, by downloading and

examining the screenshots for each app in each category.

We present the total mappings, across all fifty categories,

in terms of pitch, trigger, time, volume, and timbre. The

sixteen non-music making categories were overviewed, but

not discussed in detail. We also discuss broad trends and

underutilized mappings, as well as suggesting areas for in-

novation. Finally, we provide public access to the created

dataset, in order to further research around both iOS ap-

plications and text classification. This dataset includes the

title, URL, and descriptive text for all applications, and is

available both classified and unclassifed.

1. INTRODUCTION

Mobile touchscreen devices, such as the iPad and Nexus

10, continue to increase both in number and in power. As

these devices become more powerful and as their sensing

capacity increases, more and more new and novel applica-

tions are created for them. Music applications (apps) for

these devices predominantly exist on the iOS platform [1].

The iOS app store has in excess of 38,000 apps in the Mu-

sic category, ranging from complex synthesis engines to

trivial radio applications.

The mapping of inputs to musical parameters in these

apps is exceedingly important [2]. An iOS device’s pri-

mary input mode is a simple touchscreen, but this can be

mapped in essentially infinite ways. Likewise, the screen

can present a variety of metaphors (keyboards, dials, strings,

etc), in order to suggest a mapping to users. Fels has writ-

ten about how this use of metaphor can inform a user’s

understanding of an app [3], in terms of the relationship

between the mapping of musical parameters and the visual

metaphor presented.

In addition to a touchscreen, iOS devices contain gyro-

scopes, accelerometers, a microphone, and one or more

cameras. This range of controls enables a wide variety

Copyright: c©2014 Thor Kell et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

of musical applications with a wide variety of mappings.

Hunt et al [4] have discussed how the mapping process can

aid in relating these various control layers to the musical

layer. Understanding how these controls are mapped to

create music will allow app developers to design novel mu-

sic making apps or focus their work into an extant category

of apps.

A previous paper by the authors [5] reviewed the top

1,200 best-selling iOS applications, in terms of the inter-

action metaphor they presented to the user and the exact

mappings that they use. That work defined ten main cate-

gories for iOS music apps, delineated their mappings, and

discussed various outlying apps that did not fit into the ten

standard categories. This paper extends that work by pro-

viding high-level classification for all 38,750 (as of Jan-

uary 28th, 2014) music apps, and a summary of mappings

across all such classifications. This rather large scope was

determined by the lack of access to smaller subsets of the

data. The iTunes store lists the top 1,200 best-selling mu-

sic apps, which was the data source used for the author’s

previous paper. The only other data source is the iTunes

website, which provides data for all 38,750 apps.

Arner has also examined a small subset of iOS apps, with

a focus on their gestural interaction and uses of multitouch [6].

Approaching the problem from the other direction, Tanaka

et al [7] have provided a survey-based analysis of how mo-

bile devices of all sorts are used musically. In terms of

text classification, Zhu et al [8] have examined text and

context-base machine-learning methods for automatically

classifying apps, and Chen & Liu [9] have used similar

techniques to attempt to model how popular various types

of applications are.

This overview will provide large-scale data on how mu-

sical mappings and metaphors are defined on iOS. In addi-

tion to the ten categories defined in our previous work [5],

we define forty new categories of musical apps and delin-

eate their mappings. Moreover, in order to understand the

iOS music ecosystem as a whole, we supply broad classifi-

cations for ‘music’ applications that do not allow the user

to create music, such as radio and artist apps. We provide

summaries of the total number of apps for each category,

the total number of mappings across all apps, and offer

thoughts on how to make use of this data when design-

ing musical mappings and interfaces. We further create a

dataset for future use, consisting of the title, URL, and de-

scriptive text for each of the 38,750 apps, both with and

without classification. This publicly available dataset will

assist future studies of iOS applications, and text-based

classification techniques.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 565 -

mailto:thor.kell@mail.mcgill.ca
mailto:marcelo.wanderley@mcgill.ca
http://creativecommons.org/licenses/by/3.0/

2. METHOD

Data was downloaded from the web-facing iTunes web-

site 1 , using a webcrawler built in Python with the Beauti-

ful Soup 2 framework. In total, 38,750 apps were crawled.

The app name, URL, and descriptive text were saved.

The analysis of this data had two goals. First, to find

all apps that matched the ten known categories listed in

the authors’ previous paper [5]. These categories are: Pi-

ano, DJ, Digital Audio Workstation (DAW), MPC (A pad-

based sampler/sequencer, based on the Akai MPC), Gui-

tar, Drum Kit, Synthesizer, Sequencer, Karaoke, and Amp

Sim. ‘Radio’ and ‘Artist’ apps were added to this list, due

to the large numbers seen during cursory examinations of

the data. The hope was to train a classifier to recognize

these twelve known categories. Once apps that matched

these categories were found, the second goal would be at-

tempted: to discovered and count new categories, ideally

using K-Means or similar processes.

In order to achieve the first goal, several supervised machine-

learning methods were attempted, using both the TextBlob 3

and SciKit-Learn 4 [10] Python libraries. Training data

was selected by examining apps that included the title of

the category in their name or descriptive text, and then se-

lecting apps that fit into the category in question. 25 to

50 apps were selected for each category. Both Bayesian

classification and Support Vector Machines (SVM) were

trained on this data. Using only the name of each applica-

tion as a feature proved ineffective, as did using the entire

descriptive text. Table 1 shows these poor results for both

Bayes and SVM.

In terms of the Bayesian classifier, this poor performance

is probably due to both the very high number of features

and a high level of inconsistent dependencies among the

dataset [11]. SVM, on the other hand, performs poorly

when the number of features is much larger than the num-

ber of training samples [10]. In this case, each class had

only 25 to 50 samples, with 8,882 features.

A whitelist of words important to each category was thus

constructed. The whitelist can be seen in Table 2. This

reduced the number of features to 114. As Table 1 again

shows, this whitelist improved both the Bayesian and SVM

1 https://itunes.apple.com/us/genre/ios-music/id6011?mt=8
2 http://www.crummy.com/software/BeautifulSoup/
3 http://textblob.readthedocs.org/
4 http://scikit-learn.org/

Table 1. Classification Methods
Method Training Data Whitelist Accurary

Bayes App Name False 0.55

SVM App Description False 0.31

Bayes App Name True 0.77

Bayes App Description True 0.88

Bayes Both True 0.90

SVM App Name True 0.57

SVM App Description True 0.83

SVM Both True 0.90

Table 2. Whitelisted Words per Category

Category Whitelisted Words

Radio Radio, Station, FM

Artist Upcoming, Latest, Bio, Connected, Of-

ficial, Exclusive, Fan, News, Band,

Musician, Composer

Piano Piano, Keyboard, Chord, Scale, Key,

Note, Theme, Hand, Harpsichord,

MIDI
Drum Drum, Drumming, Kit, Drummer,

Snare, Kick, Crash, Ride, Cymbal,

Percussion, Percussionist, Beat, Roll,

Hihat, Hi-hat, Brush, Stick, Bongo,

Conga, Taiko

Guitar Guitar, String, Strum, Strumming, Vi-

brato, Tremolo, Electric, Tab, Twang,

Mandolin, Steel, Pedal

Karaoke Sing, Song, Karaoke, Star, Catalog,

Share, Recording, Stage

DJ Turntable, Deck, Scratch, Mix, Mixer,

Mixing, Cue, Crossfader, Sync, Beat-

match
MPC MPC, Pad, Sample, Production, Akai

Sequencer Sequence, Sequencer, Groovebox,

Beatbox, Step, MIDI, Pattern, Tempo,

BPM, Machine

DAW Loop, Record, Recording, Audio,

Band, Mixer, Aux, Produce

Synth Analog, Analogue, Engine, Filter, Fat,

Envelop, Synth, LFO, Polyphonic,

Monophonic, Sine, Square, Triangle

Amp Sim Rig, Cabinet, Mic, Stomp, Amp, Tube

classifications, using both the app name and descriptive

text to 90% accuracy, on the test dataset.

As the SVM model using both the app name and the de-

scriptive text was producing good results on the test data,

the next step was to run the trained model on the entire

dataset. This was done category by category, in order to re-

move classified apps with each iteration. The results from

this, as seen in the first column of Table 3 seemed reason-

able, at first blush. However, a manual examination of the

remaining apps showed that many, especially Radio apps,

were missed, suggesting that the models were overfitting to

the test data. In hindsight, comparing the results between

the columns of Table 3 show that some of the tested cat-

egories worked very well (Piano), while others did very,

very badly (Radio).

These results were probably due to insufficiently trained

models. Each category only had 25 to 50 apps to train on,

and they were selected iteratively through the dataset, not

at random. Radio apps, it would appear, are much more

heterogeneous than the training data that was used.

In addition to attempting to classify known categories of

applications, the second goal was to define new categories

- ideally by clustering unclassfied apps together. This was

first attempted on test data, and did not give good results.

Using SciKit-Learn’s K-Means algorithm on the twelve

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 566 -

Table 3. Estimated Results vs. Actual Results
Category Estimated Actual

Radio 5288 10057

Piano 798 752

Drums 644 741

Karaoke 740 246

DAW 226 138

MPC / Sampler 220 136

Table 4. Clustering Results

Cluster Number of Apps Number of Categories

1 6 1

2 94 9

3 29 3

4 191 12

5 3 1

6 14 1

7 27 6

8 57 7

9 24 2

10 63 5

11 19 6

12 2 1

categories of test data was ineffective, even when using the

whitelisted name and the whitelisted description. The apps

both failed to cluster in groups around their categories, and

failed to give correct numbers of apps per cluster. Table 4

shows the number of apps per cluster, and Table 5 shows

the categories per cluster. Figures 1 and 2 shows the re-

sults of this clustering, with its dimensionality reduced via

principle component analysis (PCA). As can be seen, each

cluster does not contain only a single category. It was also

hoped that PCA might allow for manual segmentation of

each category. However, as can be seen by the PCA of the

data in Figure 3, this was not possible: the categories are

too intermingled to be able to draw useful segment bound-

aries.

Figure 1. Labeled K-Means clusters.

Table 5. Clustering Breakdown

Cluster Category Breakdown

1 Radio: 6.

2
Guitar: 29, Piano: 21, Karaoke: 14, DAW: 9, DJ:

8, Amp: 6, Synth: 3, Artist: 2, Sequencer: 2.

3 Drum: 15, MPC: 9, Sequencer: 5.

4

Artist: 67, Synth: 34, Piano: 25, DJ: 22, Guitar:

15, Sequencer: 13, Radio: 5, Amp: 3, MPC: 3,

Drum: 2, DAW: 1, Karaoke: 1.

5 Drum: 3.

6 Radio: 14.

7
Karaoke 9, Amp: 8, Guitar: 5, Piano: 2, DAW: 2,

Sequencer: 1.

8
Sequencer: 16, DJ 14, Synth: 10, MPC: 10, Drum:

4, DAW: 3.

9 Radio: 23, Artist: 1.

10
Drum: 26, MPC: 19, Sequencer: 13, Synth: 3,

DAW: 2.

11
Amp: 9, DAW: 5, Piano: 2, DJ: 1, Guitar: 1,

Karaoke 1.
12 Radio: 2.

Figure 2. Labeled K-Means clusters, zoomed in.

Figure 3. PCA data, zoomed in.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 567 -

Given the difficulty clustering known data, perhaps due

to K-Means’ difficulty with clusters of varying shapes and

densities (as seen in Figure 1), clustering the entire dataset

was even less viable, especially as the total number of cat-

egories was not known and the whitelist would be ineffec-

tive on these unknown categories. This left us with a some-

what effective method of classifying known categories, and

an ineffective method of finding new categories.

During this process it was discovered that, for a human,

classifying each application based on the whitelisted name,

the shortened app name in the URL, and the whitelisted

descriptive text was simple to the point of trivial.

For example, the below three strings strongly suggests an

Artist application:

• “ ”, “amon-amarth-mobile-backstage”, “official fan

exclusive fan”

Likewise, these strings suggest a Amp Sim application:

• “ ”, “ampkit”, “amp guitar amp electric guitar amp

guitar amp mic pedal guitar recording share guitar

fan”

In contrast, the below descriptive text suggests a Synth,

but the name suggests a novel application.

• “ ”, “anckorage-spring”, “audio connected keyboard

midi engine midi midi midi midi”

In this case, the entire descriptive text was checked in a

second step, and the application was then correctly classi-

fied as a Synth. The descriptive text is excerpted below:

“Anckorage Spring is a physical modelling audio synthe-

siser based on the simulation of a set of connected mass-

spring, integrating non-linearities, fluid and static friction,

mechanical limits, gravity and bouncing. It is designed to

be controlled by a continuous controller (like the Haken

Continuum www.hakenaudio.com)...”

Using this method it was found that 500 apps, with the

use of a Python script to skip through them, could be shunted

into the initial twelve categories in as little as fifteen min-

utes, giving a ‘mere’ 39 hours to complete the task of man-

ual classification. This is, of course, not to say that text-

based machine learning is ineffective. Zhu et al [8] have

made use of text data to successfully classify apps (though

only 680 of them) of them, and Whitman et al [12] have

used natural language processing and text-based machine

learning on community metadata as a key component of

their work in classifying music. The present paper, how-

ever, was simply looking to classify a large number appli-

cations with a high degree of accuracy, not investigate ma-

chine learning techniques. Manual classification also had

the advantage of being completable in a known, though

long, amount of time, whereas automatic classification pre-

sented a very open-ended problem. Furthermore, good,

manually classified data could also be used as ground truth

data for future investigations of text-based classifications

and of the iOS app store.

It was thus decided to manually classify the data. Af-

ter the first 10,000 apps had been classified by hand, two

heuristics were added to speed the process: apps that had

‘radio’ in the name were immediately defined as Radio ap-

plications, and apps that had whitelisted descriptive text of

‘official update new connect’ were immediately defined as

Artist applications.

During this process, many applications could not be fit

into the twelve known categories. Those were logged sep-

arately, and then examine with the full text of their names

and descriptive text. Out of those apps, new categories

(accordion apps, for example) were defined, based on the

descriptive text. Totally novel apps were again logged sep-

arately. Due to time constraints, the 481 novel applications

were not examined in detail.

Once this two-tiered process was complete, each category

was counted. In order to define the mappings for each cat-

egory, the screenshots for each app in each category were

downloaded and examined, again using a web crawler. In

some few cases, (the Karinding, for example) videos of

apps were examined in order to define the mappings. Only

the general mappings for each category were defined. For

example, if all but one Xylophone app maps pitch to the

colours of the rainbow, the Xylophone category as a whole

will be assigned this mapping of pitch to colour.

2.1 Verification

This classification process is not a perfect one. Even ig-

noring typos, this sort of fast human classification is prone

to errors. In order to verify the quality of this method,

100 randomly selected apps were examined using their full

name and full descriptive text: 94 were correctly classified,

and 6 were incorrect. Then, 100 more randomly selected

apps were tested, ignoring apps from the Radio, Artist, Me-

dia, and Non-English categories. Once again, 94 were clas-

sified correctly, and 6 were in error. It must also be noted

that the Media, Educational, and Tool categories contain

many interesting apps that are outside the scope of this

paper. More in-depth app reviews would be well served

to begin with these categorizations - to say nothing of the

various applications in languages other than English.

3. RESULTS

3.1 Music-Making Applications

Applications that allow the user to produce music are, of

course, the focus of this paper. Table 6 shows the number

of applications in each category for these music-making

applications. Each of these categories also include appli-

cations with similar layouts. The ‘Guitar’ category, for ex-

ample, also includes lute, banjos, mandolins, ukeleles, and

so on. Categories that may require further explanation are

listed below:

• Ball Sim - Apps that trigger sounds via a physics

simulation of balls or other objects moving around.

• Chord Sequencer - Apps that allow the user to se-

quence symbolic representations of chords, either in

guitar tablature or text / numeric format

• Dulcimer - Western dulcimers, hammered dulcimers,

and so on.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 568 -

• Gamelan - Indonesian Gamelan instruments, include

bells, gongs, and metallophones.

• Guqin - The guqin is an ancient Chinese zither, with

angled strings.

• Hang - The hang is a modern pitched percussion in-

strument, similar to the steelpan.

• Kalimba - The kalimba, or thumb piano, is an African

plucked percussion instrument.

• Karinding - The karinding is an Indonesian mouth

harp.

• Looper - Apps that loop audio recorded by the user,

rather than sequencing samples.

• Melodica - A reed-based wind instrument, with a

small keyboard for selecting pitches.

• MIDI / OSC - Apps that output MIDI or OSC, to

control other devices. As these apps vary wildly,

their mappings are not included in the final count.

• Ocarina - The ocarina, a simple wind instrument, oc-

curs in many cultures, but is perhaps most famous

for its role in the ‘Ocarina of Time’ video game.

• Ondes Martenot - An early 20th century electronic

instrument, featuring both ribbon and keyboard con-

trol of pitch.

• Steelpan - A pitched percussion instrument, origi-

nally from Trinidad & Tobago.

• Vuvuzela - A trombone-like South African instru-

ment instrument, with a single pitch.

• Zither - Eastern zithers, including the guzheng, jen-

treng, qanun and gayageum.

3.2 Non-Music-Making Applications

Broad categories were defined for apps that do not make

music. These make up the majority of the music section

of the app store. Table 7 shows the numbers of apps per

category, and each category is defined below. This section

also includes ‘Junk’ apps that are not music apps at all,

and apps that were unclassifiable due to their descriptive

text not being in English.

• Radio - Apps for a particular radio station, that as-

semble many radio stations, and so on.

• Media - Apps that deliver non-auditory media, al-

low for the playback of auditory media in a non-

musical way, including soundboards, ‘best songs’

for a genre, and so on.

• Artist - Apps for promoting a particular artist, a group

of artists, a festival, a recording studio, and so on.

• Non-English - Apps with descriptive text not in En-

glish, and thus not reviewable in this paper.

Table 6. Number of Applications per Category, Musical

Applications

Rank Category Number of Apps

1 Piano 752

2 Drum 741

3 Sequencer 606

4 Novel 481

5 Guitar 385

6 Synth 277

7 Karaoke 246

8 Effect 149

9 DAW 138

10 MPC / Sampler 136

11 Xylophone 132

12 DJ 119

13 Accordion 74

14 Band 67

15 Flute 67

16 MIDI / OSC 65

17 Harp 47

18 Amp Sim 45

19 Bells 40

20 Looper 36

21 Chord Sequencer 36

22 Bagpipes 33

23 Notation 33

24 Steelpan 33

25 Violin 31

26 Organ 25

27 Gamelan 24

28 Trumpet 23

29 Ball Sim 23

30 Zither 17

31 Harmonica 16

32 Kalimba 15

33 Clarinet 13

34 Water Glasses 11

35 Trombone 9

36 Dulcimer 9

37 Singing Bowl 9

38 Cello 9

39 Saxophone 8

40 Horn 7

41 Melodica 6

42 Vuvuzela 5

43 Ocarina 4

44 Washboard 4

45 Conductor 3

46 Hang 3

47 Pan Pipes 2

48 Ondes Martenot 2

49 Guqin 1

50 Karinding 1

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 569 -

• Educational - Apps for teaching an instrument, a the-

oretical concept, and so on.

• Tool - Apps for accomplishing music related tasks,

including tuners, spectrum analyzers, and so on.

• Games - Apps for playing games about music or mu-

sicians

• Junk - Apps that have been mislabled and are not

music apps.

• Remote - Apps for remote control of non-musical

audio systems, such as home theatre systems.

• Discovery - Apps for finding new music, new playlists,

and so on.

• Christmas - Apps about Christmas.

• Print - Apps for a particular print magazine, or emu-

lating a print magazine.

• Recorder - Apps for recording sound.

• Social - Apps for communicating about music on

Twitter or other social media platforms.

• Fitness - Apps for controlling music while working

out.

• Fingerprint - Apps for fingerprinting audio.

Table 7. Number of Applications per Category, Non-

Musical Applications

Category Number of Apps

Radio 10057

Media 7416

Artist 7161

Non-English 2806

Educational 2052

Tool 1406

Games 905

Junk 354

Remote 334

Discovery 272

Christmas 268

Print 249

Social 220

Recorder 154

Fitness 50

Fingerprinter 20

4. MAPPINGS

Table 8 shows the total mappings, across all categories.

The mapping definitions used are hopefully self-explanatory.

In terms of those that are less clear, a ‘Known Layout’

refers to an app that matches the visual layout of a real

instrument, and maps some parameter based on this in a

way that does not fit into any other category. For example,

a drum application maps timbre based on a Known Layout

- that of a drum kit.

‘Force’ here means methods of determining how hard the

user is tapping the device, often by polling the accelerom-

eter or the microphone. A ‘Gesture’ indicates any motion

more complex than a touch, typically a dragging or cir-

cular movement. When applied to the Volume parameter,

this indicates that the speed of the gesture directly varies

Table 8. Mappings for Musical Applications

Mapping Pitch Trigger Time Volume Timbre

Horizontal:

Left-to-

Right
2142 0 1559 138 141

Horizontal:

Right-to-

Left

11 0 0 128 0

Horizontal:

Center-to-

Edge
15 0 0 0 0

Vertical:

Top-to-

Bottom

35 0 152 0 0

Vertical:

Bottom-to-

Top
1307 0 0 1483 1358

Diagonal:

Bottom-

Left-to-Top-

Right

38 0 0 0 0

Rotational:

Clockwise
0 0 9 0 0

Circular 33 0 0 0 0

Radial:

Edge-to-

Center

33 0 0 0 0

Grid 43 0 0 0 0

Vertical Size 105 0 0 0 0

Overall Size 33 0 0 0 0

Colour 78 0 0 0 12

Symbolic /

Text
69 0 33 33 33

Continuous 190 0 612 1630 1498

Discrete 3931 0 1042 33 33

Playback 0 1104 0 0 0

Toggle 8 272 0 9 1207

Touch 0 3096 0 24 25

Gesture 0 86 0 10 2

Shake /

Swing
0 20 0 20 0

Known Lay-

out
167 0 0 0 746

Microphone

Input
0 282 0 36 0

Audio Input 0 194 0 0 0

Force 0 0 0 81 0

Physics 12 23 0 23 18

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 570 -

the volume of the sound. Finally, vertical mappings re-

fer to the gesture used, not the metaphor presented: many

apps present the user with rotary knobs which are actu-

ally controlled by vertical motion. This paper has used the

mapping throughout, rather than the metaphor.

4.1 Pitch

Pitch is dominated by keyboard-like, left-to-right or bottom-

to-top mappings. Discrete pitches are likewise much more

prevalent than continuous pitch. Some few apps increase

pitch from top to bottom (zithers, for example), and even

fewer increase pitch from right to left (trombones and pan

pipes, in particular). Outside of these linear mappings, the

next most popular mapping for pitch is the ‘Known Lay-

out’ of wind instruments, which is usually abstracted to a

set of 3-6 buttons that additively modify the pitch: press-

ing two buttons together gives a new pitch, rather than two

pitches.

Mappings of pitch to colour are not uncommon, but a sin-

gle dominant mapping of colour to pitch was not found.

Likewise, mappings of pitch to size exist, but are always

secondary to some other mapping (horizontal in the case

of xylophones, and circular in the case of steelpans). Sym-

bolic and text mappings are entirely based on various West-

ern systems, including the sharps / flats of traditional staff

notation, and various representations of chords (V6, Dm7,

etc).

4.2 Trigger

Unsurprisingly, given that the primary interaction method

on iOS devices is a touchscreen, mapping one touch to one

sonic event is by far the most popular method for trigger-

ing sounds. Toggles are also popular, along with events

or states that are often controlled by toggles, such as the

playback of a sequencer or audio input from another de-

vice. Gestural mappings are not common, and mostly use

simple movements: a circular motion to trigger a drum roll

instead of a single drum hit, for instance. Making use of

the device’s other sensors, via a swing or a shake of the

device, is not common. No applications were found that

triggered sounds via a gesture made by moving the device

itself - such mappings, may, however, exist in one of the

unexamined Novel apps.

4.3 Time

Time moves from left to right, and from top to bottom.

Discrete time is slightly more prevalent than continuous

time. Some very few apps map time rotationally, clock-

wise. Even in Notation apps, where time & rhythm is rep-

resented symbolically, the flow of time is from left to right.

4.4 Volume

Volume is dominated by vertical mappings, usually pre-

sented continuously. Some apps make use of force-based

or shake/swing methods for determining volume. These,

along with wind instrument apps that base volume on the

input from the microphone, are the closest to ‘real’ acous-

tic instruments. An even smaller but more interesting map-

ping is that of touch / gesture to volume. For instance,

some Gamelan apps allow for virtual bars to be muted by

touching them in particular locations, and some Singing

Bowl and Water Glass apps play louder sounds based on

the speed of the triggering circular gesture.

4.5 Timbre

Like volume, timbre is mostly controlled vertically and

continuously. Many apps use toggles to change between

preset timbres (in piano apps, for instance), and many use

Known Layouts to control the timbre of the sound played

- drum kits are a prime example of this. Other timbral

controls are much more rare. Surprisingly, colour is only

used rarely for timbral control. However, like Volume, a

very small number of apps use additional touches to con-

trol timbre. To continue the Gamelan example, some apps

also allow for a muted timbre to be played if a virtual bar

is touched before triggering it.

4.6 Summary

From Table 8 and the above paragraphs, it is clear that most

apps use typical mappings: pitch from left to right, sounds

triggered by touch, and volume / timbre controlled by ver-

tical faders. Most of these mappings do not take advantage

of sensors outside of simple touch and location. Complex

gestures, microphone input, and shaking/swinging the de-

vice are used to control parameters from pitch to volume

to timbre for a small number of applications, but are in

general ignored. Likewise, most apps separate the con-

trol of each parameter, mapping them to different controls

and in different ways. Integral mappings are almost en-

tirely ignored. The 481 apps in the Novel category have

not been examined, however. They would almost certainly

contribute to making Table 8 more varied.

5. DATASET

In order to further research around iOS music apps, we

have made the dataset and Python scripts used to exam-

ine the data publicly available The data (consisting of the

name, URL, and descriptive text for each app) is provided,

classified and unclassified, in order to allow for a wide vari-

ety of machine-learning approaches and/or brute-force ap-

proaches. The complete collection of data and code can be

found at idmil.org/projects/ios mappings.

6. CONCLUSION

We have provided a high-level review of all music apps on

the iOS app store as of January 2014. This builds upon the

authors’ previous paper [5], which provided an in-depth

look at the most popular iOS music apps. We have also

provided the raw text data, classified and unclassified, for

future research around text-based machine learning, app

classification and more.

In the review itself, we discovered many new iOS instru-

ments that represent extant, acoustic instruments, ranging

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 571 -

from bagpipes to zithers. We also discovered a smaller

number of new, purely electronic instrument categories, in-

cluding loopers, chord sequencers, and bouncing-ball apps.

We provided a high-level overview of mappings for each

of these categories: this data will be useful both for un-

derstanding the overall iOS application ecosystem and the

musical subset thereof. More importantly, this data can be

used to understand how musical parameters are mapped on

touchscreen devices, and thus influence how new musical

applications are designed.

To be specific, we can see the dominance of simple map-

pings: pitch generally moving horizontally and discretely,

volume and timbre moving vertically and continuously, and

time moving from left to right. Although many applica-

tions make use of more complex mappings and more com-

plex inputs, they are in a minority. This is a potentially

rich area for innovation: one can easily imagine apps that

use the microphone, accelerometer, and gyroscopes of iOS

devices in new and interesting ways. Likewise, integral

mappings for timbre and volume or non-traditional repre-

sentations of pitch / time could both lead to interesting and

innovative apps for making music.

Further work after such a high-level review is legion. A

detailed examination of the Media, Educational, and Tool

categories should be done, and would no doubt reveal sundry

new ways to map musical parameters, in tuning apps, how-

to-play apps, and so on. Indeed, a deep dive into each of the

main categories described above could provided further de-

tail about how each category maps parameters. Likewise,

the 481 Novel applications should be examined in detail.

Touchscreen devices, and iOS in particular, are here to

stay, and the ability of these platforms to create music at all

levels of sophistication is only going to grow. This report

has furthered the task of understanding how musicians and

developers are dealing with the mapping of music parame-

ters, and will hopefully result in a deeper understanding of

the mapping process and its outcomes.

Acknowledgments

Special thanks to Vanessa Yaremchuk for her knowledge

of machine-learning methods.

7. REFERENCES

[1] E. van Buskirk, “Developer Explains

Why Android Sucks for Some Au-

dio App,” http://evolver.fm/2012/05/23/

developer-explains-why-android-sucks-for-some-audio-apps/,

05 2012, accessed: 24/02/2013.

[2] A. Hunt, M. M. Wanderley, and M. Paradis, “The im-

portance of parameter mapping in electronic instru-

ment design,” Journal of New Music Research, vol. 32,

no. 4, pp. 429–440, 2003.

[3] S. Fels, A. Gadd, and A. Mulder, “Mapping trans-

parency through metaphor: towards more expressive

musical instruments,” Organised Sound, vol. 7, no. 2,

pp. 109–126, 2002.

[4] A. Hunt, M. Wanderley, and R. Kirk, “Towards a model

for instrumental mapping in expert musical interac-

tion,” in Proceedings of the 2000 International Com-

puter Music Conference, 2000, pp. 209–212.

[5] T. Kell and M. M. Wanderley, “A quantitative review of

mappings in musical ios applications,” in Proceedings

of the Sound and Music Computer Conference 2013,

2013, pp. 473–480.

[6] N. F. Arner, “Investigation of the use of Multi-Touch

Gestures in Music Interaction,” Master’s thesis, Uni-

versity of York, 2013.

[7] A. Tanaka, A. Parkinson, Z. Settel, and K. Tahiroglu,

“Survey and thematic analysis approach as input to the

design of mobile music guis,” Proceedings of the In-

ternational Conference on New Interfaces for Musical

Expression, 2012.

[8] H. Zhu, H. Cao, E. Chen, H. Xiong, and J. Tian, “Ex-

ploiting enriched contextual information for mobile

app classification,” in Proceedings of the 21st ACM in-

ternational conference on Information and knowledge

management. ACM, 2012, pp. 1617–1621.

[9] M. Chen and X. Liu, “Predicting popularity of online

distributed applications: itunes app store case analy-

sis,” in Proceedings of the 2011 iConference. ACM,

2011, pp. 661–663.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-

nay, “Scikit-learn: Machine learning in Python,” Jour-

nal of Machine Learning Research, vol. 12, pp. 2825–

2830, 2011.

[11] H. Zhang, “The optimality of naive bayes,” in Proceed-

ings of the FLAIRS Conference, vol. 1, no. 2, 2004, pp.

3–9.

[12] B. Whitman and S. Lawrence, “Inferring descriptions

and similarity for music from community metadata,” in

Proceedings of the 2002 International Computer Music

Conference. Citeseer, 2002, pp. 591–598.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 572 -

http://evolver.fm/2012/05/23/developer-explains-why-android-sucks-for-some-audio-apps/
http://evolver.fm/2012/05/23/developer-explains-why-android-sucks-for-some-audio-apps/

