
SoundScapeTK: A Platform for Mobile Soundscapes

Thomas Stoll

Kitefish Labs

Buffalo, NY, USA

tms@kitefishlabs.com

ABSTRACT

SoundScapeTK is a set of software tools for soundscape

composition utilizing smartphones. Developed as an out-

growth of earlier technological solutions, the software is

a simple system for developing and deploying a series of

sounds placed in a physical space using GPS information

from individuals’ phones. The user experiences mixtures

of these sounds as he/she moves about, with location infor-

mation triggering all responses and interaction. The soft-

ware is described in terms of its current core features, along

with possibilities for extension and further capabilities.

1. INTRODUCTION

SoundScapeTK (SSTK) is an open source software project

developing tools for soundscape composition utilizing smart-

phones. At present, SSTK is an iOS project, but Android

or cross-platform versions are planned. The main focus

of SSTK is to maintain a simple, effective, yet extensi-

ble software platform for composing and presenting mo-

bile soundscape compositions. This paper outlines some

examples of work that has influenced the design of SSTK,

a thorough description of the software, the PureData-based

audio engine, and other aspects of the system’s design. Fi-

nally, some general ideas for the future development of the

software are suggested.

2. PAST WORK

A number of mobile audio platforms have influenced the

design of SSTK, in both direct and indirect ways. One di-

rect predecessor of the software is Mscape [1] from Hewlett

Packard (HP), used by artists such as Constance Fleuriot,

Martin Reiser, Erik Conrad, and in cultural heritage pro-

jects[2]. In 2006, for instance, researchers from HP Labs

worked with a team from the Historic Royal Palaces to cre-

ate Escape from the Tower, a location-based mobile game

at the Tower of London [3], in which players smuggled vir-

tual escapees past the real Yeoman Warders, or ‘Beefeaters’.

Mscape had its direct predecessor in MobileBristol [4],

a project developed and supported by the University of

Western England (circa 2004). Individual artists had pi-

oneered similar applications in the prior decade includ-

Copyright: c©2014 Thomas Stoll et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

ing Teri Rueb —“Trace”, 1999; “Drift”, 2004—and Stefan

Schemat—“Berlin Alexanderplatz 5.0”, 1999. Some mo-

tivations and descriptions these works are documented in

Stephen Wilson’s book on “Information Arts” [5]. Other

works from the pre-smartphone era that include advanced

uses of technology in the form of laptops carried in back-

packs [6] by participants have been presented. The equip-

ment has shrunk from laptop to handheld, and evolved from

D.I.Y. hardware to common off-the-shelf mobile phones.

Though these first projects employed custom software de-

veloped by Teri Rueb in collaboration with a variety of dif-

ferent programmers, she has continued to develop works in

this genre that sometimes employ commercial software in-

cluding MobileBristol—“Itinerant”, 2005—and Mscape—

“Core Sample”, 2007. SoundScapeTK is the result of the

author’s work with Rueb since 2012. Not driven by the

tools, Rueb instead is committed to developing composi-

tions bas-ed on cues and inspirations drawn from the sites

themselves and their social contexts. As such, each project

demands a different set of technical solutions and func-

tionalities. SSTK reflects basic functions of location-based

sound playback as appropriate for the project for which it

was first created—“No Places With Names”, a 2012 col-

laboration with Larry Phan and Carmelita Topaha. It was

also used in a new iOS version of her first GPS-based sound

walk, “Trace”, created in 1999 as a New Media Co-production

with the Banff Center for the Arts. 1

As the hardware has become more mainstream, the soft-

ware includes some open source code in the form of the

PureData-based audio synthesis engine, libpd [7]. A num-

ber of artistic applications have appeared in the first years

of the smartphone era with Pd as a mobile audio engine.

Most notable is RjDj [8], which produced an app that

attempted to remix audio from listeners’ smartphone mi-

crophones into their headphones. RjDj’s attempt to sonify

ambient audio into music is directly related to work from

artists, notably Layla Gaye [9].

There are a number of albums or album extras that are

released in the form of apps—see Daft Punk’s iDaft 2 or

Radiohead’s PolyFauna 3 as examples. These apps are in-

tended to add to the experience of the audio, and, as in

these two examples, many feature tools for remixing. There

is one musical group, Bluebrain, that has produced sev-

eral location-based mobile apps [10] conceived as albums.

These app-album hybrids are based at famous landmarks,

1 For more information see http://www.terirueb.net.
2 http://bit.ly/1m46o6h
3 http://bit.ly/1jGl5sE

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1731 -

mailto:tms@kitefishlabs.com
http://creativecommons.org/licenses/by/3.0/
http://www.terirueb.net
http://bit.ly/1m46o6h
http://bit.ly/1jGl5sE

"1" : {

"type" : "sampler",

"sides" : 0,

"center" : [43.65072, -72.310644],

"radius" : 0.000395,

"sfIDs" : [1],

"attack" : 2000,

"release" : 5000,

"loop" : 1,

"cutoff" : 1,

"active" : 1,

"toactivate": [2, 3],

"lives" : 25

}

Figure 1. JSON code for a circular region, mapped to a

sound file. This region loops, activates two other regions,

and will play up to 25 times.

including the National Mall 4 in Washington, D.C.

3. SOUNDSCAPETK

SoundScapeTK is a set of classes designed to provide a

simple, yet extensible platform for soundscape composi-

tion using smartphones. Once activated, the app runs a

routine that continuously queries the user’s location at a set

time interval (defaulting to once per second). Once a valid

location with sufficient accuracy is detected, the location

is hit-tested against an internal model of sounds mapped

to regions in space, according to a special file loaded at

launch. The map is a series of—potentially overlapping—

circular regions, and once the software detects a“hit” for

a region, the app plays the linked sound file or feeds the

appropriate parameters to a synthesis routine.

This section describes the system in detail, including sev-

eral practical tools and extensions to this very simple con-

cept. The description of the software includes rules-based

interactivity based on a special JavaScript Object Notation

(JSON) data file, the handling of fading between regions’

sounds, the use of Pd as sound engine, the use of the GUI

for testing and monitoring purposes, and other aspects.

3.1 The GPSON File and Rules for Interaction

There are several basic functions that, in addition to the

above summary, describe how SSTK works. Each sound

file and the region to which it is mapped is maintained as

part of the application’s state. Further information fields

attached to these lists are maintained as well. An instance

of the app, which is also fully encapsulates a composition,

is based around a GPSON file that describes the regions,

mappings, and other parameters that make up the particu-

lar piece. GPSON files are JSON files with a certain ar-

rangement of data expected by SSTK. Figure 1 shows an

example region encoded within a GPSON file. Since this

is the heart of the system, in terms of representing each

region-to-sound mapping, a detailed explanation follows.

4 http://bit.ly/1iQiE3x

At present, there is only one type of region shape. Each

region description contains the latitude, longitude, and ra-

dius, all expressed in decimal longitude/latitude values, of

the geographical region to which a sound is mapped. The

mapping from region to sound file is accomplished by pro-

viding a list of sound file identifiers (sfIDs) that identify

which sound file is too be triggered. At present, sound files

must be named as zero-padded 2-digit numbers followed

by the extension. In this case, the sound file with the key

1 points at a file bundled with the app named “01.wav” or

“01.mp3”. There are controls for the ramp times for both

the attack and the release times. These times are expressed

in milliseconds. These parameters and mappings are the

most basic set of information for a region.

In addition to the basic information, there are several ad-

ditional parameters. There are flags for looping and for

activating the region—not every region needs to be ac-

tive when the piece begins to run. The inactive regions

would need to be activated in some way, and regions with

lists of “toactivate” region indexes cause those regions’ ac-

tive flags to turn on when that first region is first entered.

The “lives” setting contains the maximum number of times

that the region can have its associated sound file triggered.

Each time the region’s associated sound file is played, even

if not in its entirety, the number of lives is decremented.

Once the number of lives is decremented to 0, the region

becomes, for all intents and purposes, inactive. Looping, if

enabled, will stop once the lives limit is reached.

Two final rules play an important role in the deployment

and realization of a piece within SSTK. One governs the

pausing and resumption of sound files’ playback, and one

defines the maximum polyphony. When a user is detected

to be outside a region that has been playing sound, sound

playback is either cut off or allowed to complete for the

current traversal through whatever sound file is being played.

If the “cutoff” flag is set to non-zero, the region’s sound

will be paused upon exit and resumed upon reentry. This

behavior can be modified by changing the cutoff flag to

a negative number, thus causing playback to begin again

at time point 0 in the sound file upon future reentry to

the region. The maximum polyphony is an implicit rule.

Any time that a user “hits” a region while there are al-

ready the maximum number of sounds playing, region en-

try and playback of linked sounds is blocked by this rule.

The composer is not limited in any way to a set maximum

number of overlapping regions, so this implicit rule could

be used to make an interesting unpredictable interaction

within the rules of the system.

3.2 Overall Software Design

SSTK is a collection of Objective-C classes that make up

a mobile app. These classes are somewhat modular, de-

pending on the particular needs of a piece or depending

on the sound design used. The default sound design, de-

scribed below, is a polyphonic sampler with four voices.

The major classes are listed in Table 1. While there are

many modifications that can be made, the core function-

ality is completely contained within these classes, a few

other code files, GPSON files, and the sound files them-

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1732 -

http://bit.ly/1iQiE3x

SSTKAppDelegate Launches Pd, file opera-

tions.

SSTKViewController Draw the interface, handle

raw locations.

HTLPManager Hit-testing and stateful play-

back logic.

LAPManager Track location; post-process

raw location data.

AudioFileRouter Perform the actual message-

sending that controls Pd.

LinkedCircleRegion Encapsulate data associated

with circular regions.

Linked SoundFile Encapsulate data associated

with sound files linked to re-

gions.

MapViewController View regions, current loca-

tion, and current state infor-

mation.

Table 1. The classes that comprise SoundScapeTK.

selves.

3.3 Pd Sampler Interface

PureData (Pd) is used as the sound engine for SoundScape-

TK and pieces built with the software in the form of libpd.

libpd runs on a wide variety of mobile and non-mobile

platforms and is, critically, designed to be run without it’s

patching GUI. The sound engine is programmed graph-

ically as a patch and then loaded by the C framework.

All interaction takes place through messaging. Within the

graphical interface to Pd, with which most electronic music

makers should be familiar, the messaging feature is a con-

venient way to send information from one part of a large

patch to another. In libpd, the “sends” are C or Objective-

C functions, and the corresponding receives can be seen in

the patch that is loaded. The reverse situation takes place

as well: information is sent from the loaded patch to a C

function that receives data within the running app, often

for debugging purposes.

With minimal effort, SSTK can be modified to accommo-

date a new Pd patch and, thus, a new sound engine. The

current default within the code for SSTK is a sampler with

four independent voices (see previous section). Figure 2

shows one voice of such a sampler. It is trivial to mod-

ify the patch to run a different number of voices and in-

crease or decrease the maximum polyphony of the system.

While there is an upper limit to the number of simultane-

ous voices—recall that this being run on a phone—there is

no theoretical limit to the scaling of this feature. Likewise,

there is no limit to the variety of sound designs that could

be incorporated into SSTK. The current system, based on

sound playback, is just one possible configuration of one

design; there exist Pd patches for both the playback of MP3

and PCM files.

Figure 2. The Pd patch for one sampler voice. The

send objects are passing information to Objective-C that

is logged in order to debug the application.

3.4 Synthesis interface

The author has successfully deployed moderately complex

synthesis-based sound design within an iteration of the app

where geographical regions map to certain synthetic sounds

and, furthermore, the location of the user within the region

causes changes in synthesis parameters—for instance, the

speed of a low frequency oscillator (LFO). In “The Wheel

Within the Wheel” 5 , the user’s location relative to the radii

and/or rotational angle within a region controls the param-

eters of a polyphonic bank of modular synthesis voices.

Each region visible in Figure 3 is actually 4-16 regions

overlaid one upon the other. The relative angles and radii

map to levels and low-frequency oscillation rates within

each voice. The specific mappings are made within the

piece’s GPSON file.

3.5 Composition Interface

SoundScapeTK would be rather limited without an inter-

face for the composer to test ideas and pieces. With this in

mind, we have introduced visualization and editing capa-

bilities to the core app. There are a number of ways to up-

date the information contained within the GPS score (see

above). First, the GPSON file may be replaced by the user,

without recompiling, by downloading new files through a

settings or preferences menu/window. This ability to swap

versions of the map for a piece accelerates one’s workflow.

Rapid development and deployment of sounds is achieved

5 http://bit.ly/1ssZlUL

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1733 -

http://bit.ly/1ssZlUL

Figure 3. Several circular file regions used in the piece

“Wheel”.

Figure 4. The main interface for an iOS app “The Wheel

Within the Wheel” built using SSTK.

through a system (optional, used mainly for testing) rely-

ing on the Amazon Simple Storage Service (S3) services.

Such a feature may be turned on within an instance of the

app by changing several flags, setting up an S3 instance,

and inputing the corresponding access data into a prefer-

ence pane. Other synchronized, cloud-based services will

be incorporated in future versions.

3.6 Testing and Verification

The user is able to visualize the map overlaid with sound

regions and can display current state information—see Fig-

ure 3—about each region on the map. in a different view,

status feedback tools are available—see Figure 4. In a

version compiled for composition, the composer/creator is

able to enter edit mode at any time and change the size

and location of regions. The rules for interaction and state

tracking are also available for editing within the app.

SSTK is testable in a virtual way as well. The map viewer

interface allows the user to navigate using tap gestures while

the automated location tracking is switched off. This test-

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1734 -

ing interface allows the composer to check combinations

of sound regions and to virtually walk the map in real time

in order to rapidly experience the kinds of behavior the

system will exhibit when deployed in the real world. Test

interactions can even be automated with standard mobile

debugging tools.

3.7 Persistance and Connectivity

In all iterations of SSTK, each individual user’s state is

maintained within the individual’s app. As part of the test-

ing process for several pieces, different strategies for log-

ging of real time data were tried. The simplest involves

keeping a list within the app that logs each action—when

the location changes, when files are triggered, etc.—and

making that list available in some form outside the app.

The author’s system, which works quite well, takes advan-

tage of the ability to launch an email editor with the con-

tents of this log file and send an email (usually to oneself,

when testing) with a log of your most recent activity. In

the future, this functionality will allow for the offline recre-

ation of a sound walk. There are many more possible uses

for persistent state data and the communication of data to

and from the user, as discussed below.

4. FUTURE EXTENSIONS

There are a number of features that have been considered

or tested experimentally, but are not yet included in the

open source release of SSTK. There are additional shapes

for regions and possibilities for interaction rules. For in-

stance, rectangular regions are partially implemented within

the codebase of SSTK and could be fully reintegrated into

the system with a few lines of code. Further parameters

will likely be added in the future to control sound play-

back; for instance, the phone’s gyroscope data might effect

directional mixing of multiple sound sources in a compo-

sition.

Since the app already tracks the state of a user’s interac-

tion with a sonic map, it would be trivial to share that data

with other users or with a central server. Likewise, a server

could dynamically feed information to the app about new

sound locations or change regions based on other users’

interaction. The central server can act as a gateway or a

central controller for an interactive experience among in-

dividual smartphone users.

5. OPEN SOURCE SOFTWARE

A development version of the software is available at GitHub 6 .

While individual pieces are forked from this version of the

software, enhancements and bug-fixes will be merged into

the main development tree as they happen.

6. REFERENCES

[1] S. Stanton, R. Hull, P. Goddi, J. Reid, B. Clayton,

T. Melamed, and S. Wee, “Mediascapes: Context-

6 http://github.com/kitefishlabs/SoundScapeTK

aware multimedia experiences,” IEEE Multimedia,

vol. 13, no. 3, pp. 98–105, 2007.

[2] H. Labs. (2008) mscapefest locates to belfast. [Online].

Available: http://www.hpl.hp.com/news/2008/oct-dec/

mscapefest.html

[3] ——. (2006) Escape from the tower of london.

[Online]. Available: http://www.hpl.hp.com/news/

2006/oct-dec/tower.html

[4] M. Williams, C. Fleuriot, K. Facer, J. Reid, R. Hull,

and O. Jones, “Mobile bristol: A new sense of place,”

in Proceedings of UbiComp 2002, 2002, p. 27.

[5] S. Wilson, Information arts: intersections of art, sci-

ence, and technology. MIT press, 2002.

[6] I. for Unstable Media. (2000) Sonic interface. [Online].

Available: http://v2.nl/archive/works/sonic-interface

[7] P. Brinkmann, P. Kirn, R. Lawler, C. McCormick,

M. Roth, and H.-C. Steiner, “Embedding pure data

with libpd,” in Proc Pure Data Convention 2011, 2011.

[8] RjDj. (2014) Sonic experiences—rjdj. [Online]. Avail-

able: http://www.rjdj.me

[9] L. Gaye, R. Mazé, and L. Holmquist, “Sonic city: the

urban environment as a musical interface,” in Proceed-

ings of the 2003 conference on New interfaces for mu-

sical expression. National University of Singapore,

2003, pp. 109–115.

[10] C. Richards, “Go with music’s flow,” The Washington

Post, p. C.1, 5 2011.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1735 -

http://github.com/kitefishlabs/SoundScapeTK
http://www.hpl.hp.com/news/2008/oct-dec/mscapefest.html
http://www.hpl.hp.com/news/2008/oct-dec/mscapefest.html
http://www.hpl.hp.com/news/2006/oct-dec/tower.html
http://www.hpl.hp.com/news/2006/oct-dec/tower.html
http://v2.nl/archive/works/sonic-interface
http://www.rjdj.me

