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ABSTRACT

The research presented in this paper uses apprenticeship

learning via inverse reinforcement learning to ascertain a

reward function in a musical context. The learning agent

then used this reward function to generate new melodies

using reinforcement learning. Reinforcement learning is a

type of unsupervised machine learning where rewards are

used to guide an agent’s learning. These rewards are usu-

ally manually specified. However, in the musical setting it

is difficult to manually do so. Apprenticeship learning via

inverse reinforcement learning can be used in these diffi-

cult cases to ascertain a reward function. In order to as-

certain a reward function, the learning agent needs exam-

ples of expert behaviour. Melodies generated by the au-

thors were used as expert behaviour in this research from

which the learning agent discovered a reward function and

subsequently used this reward function to generate new

melodies. This paper is presented as a proof of concept;

the results show that this approach can be used to gener-

ate new melodies although further work needs to be under-

taken in order to build upon the rudimentary learning agent

presented here.

1. INTRODUCTION

The task this research addresses is that of using machine

learning techniques (specifically apprenticeship learning via

inverse reinforcement learning) to generate melodies. The

underlying concept used in this research is reinforcement

learning. Using this approach to machine learning, an

agent learns to perform a task by interacting with its envi-

ronment. The task is conveyed to the agent using a reward

function. The reward function maps states to rewards. If

the agent reaches a goal state, it is given a positive re-

ward. In the case of generating melodies, it is not clear

what the reward signal should be. The approach taken in

this research is to find a reward function, given expert be-

haviour. Learning then commences using the reward func-

tion. The expert behaviour in this context is a set of “ex-

pert” melodies (it is assumed that we have access to a set of

expert melodies.) Learning in this manner is denoted ap-

prenticeship learning via inverse reinforcement learn-

ing (AL via IRL) [1].
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The use of AL via IRL stems from the idea that musical

style is difficult to manually specify and that one gets the

best sense of a musicians style by listening to the musi-

cian play. It is assumed in this research that a musician has

a unique internal reward system which dictates how and

when the musician will strike a note; this internal reward

system governs how the musician plays. When the musi-

cian plays, he is therefore producing the output which max-

imizes his reward according to this reward system. The

use of AL via IRL in this context is thus an attempt by a

learning agent to learn a reward function which explains

the expert’s behaviour and thereafter to use this system to

generate music.

Melody Agent (MA) was the learning agent created for

the task of generating new melodies given a set expert tra-

jectories. The results of the experiments performed using

MA show that it was capable of generating new melodies,

although (as expected) these melodies are similar to the

expert trajectories.

The rest of this paper is broken up as follows: Section

2.1 discusses reinforcement learning; Section 2.2 discusses

IRL, which is used to uncover a reward function given ob-

served behaviour; Section 2.3 discusses AL via IRL, in

which the uncovered reward function is used for learning;

Section 3 then discusses other work in which reinforce-

ment learning was used in a musical context. Section 4

describes the implementation of MA — its action space,

state space as well as the expert melodies used. Section 5

describes the results of the two experiments performed us-

ing MA. In Sections 6, 7 and 8 a discussion on the results,

conclusions and future work are presented, respectively.

2. BACKGROUND

2.1 Reinforcement Learning

Reinforcement learning is a form of unsupervised machine

learning wherein the learning agent interacts with the envi-

ronment in order to achieve a goal [2]. The learning agent

interacts with its environment by taking an action which

changes the state of its environment. A state is a configu-

ration of the environment and an action is how an agent

affects state. Taking actions which do not only look to

maximize immediate reward, but rather to maximize future

rewards is an important feature of reinforcement learning.

The agent looks to maximize future rewards by directing

itself to states from which more reward can be gained; that

is, it tries to direct itself to states with high value. Value

can be thought of as “how good” it is to be in a particular
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state, with respect to the expected future reward. A state

only one step away from a goal state would have a higher

value than a state two steps away from that same goal state.

A value function maps states to values. A related concept,

and one that is more pertinent to this research, is that of the

action value function. This function describes the value

of taking an action within a state. This is discussed further

in section 2.1.2.

How an agent behaves - that is, which actions it takes

in which states - is dictated by a policy. A policy is a

mapping from states to probabilities of selecting actions.

A policy may be deterministic in which case the policy is

a mapping from each state to a corresponding action. A

policy is denoted by the letter π.

2.1.1 Return

The learning agent attempts to ascertain the optimal policy

- this is the policy which maximizes the expected cumula-

tive discounted reward from a given state. The cumulative

discounted reward is known as the return. This is shown

in equation 1.

Rt =
∞
∑

k=0

γkrt+k+1 0 ≤ γ ≤ 1 (1)

In the above equation, γ is the discount rate which is be-

tween 0 and 1. It is used in order to ensure that the sum

in 1 has a finite value. The closer γ is to 1 the more far

sighted the agent becomes, weighing future rewards more

heavily. If γ is 0 then the agent concerns itself only with

immediate reward, not taking into account any future re-

wards received.

Note here that this is the actual return received by the

learning agent. If the environment’s dynamics were known,

this return could be calculated a priori. What the learning

agent attempts to uncover is a policy which will direct the

agent in such a way that Rt is maximized. Of course, this

problem is non-trivial as the dynamics of the environment

can be (and usually are) complex, unknown and laden with

uncertainty.

2.1.2 Action Value Function

The action value function for a policy π is defined as fol-

lows:

Qπ(s, a) = Eπ{Rt|st = s, at = a} (2)

= Eπ

{

∞
∑

k=0

γkrt+k+1

∣

∣

∣

∣

∣

st = s, at = a

}

(3)

where Rt =
∑∞

k=0 γ
krt+k+1 is the return (that is, the cu-

mulative discounted reward), following time t. The action-

value function associates to each state the value of each ac-

tion from that state, under a given policy. The next section

presents Sarsa - an algorithm which estimates the action

value function in order to find an optimal policy.

2.1.3 Sarsa

Figure 1 presents Sarsa which is used to find a policy which

will elicit good behaviour from a learning agent, where

good behaviour is measured relative to a reward function.

1: Initialize Q(s, a) arbitrarily

2: loop (for each episode):

3: Initialize s

4: Choose a from s using policy derived from Q (e.g.,

ǫ-greedy)

5: repeat (for each step of episode):

6: Take action a, observe r, s′

7: Choose action a′ from s′ using policy derived

from Q (e.g., ǫ-greedy)

8: Q(s, a) ← Q(s, a) + α
[

r + γQ(s′, a′) −

Q(s, a)
]

9: s← s′; a← a′;
10: until s is terminal

11: end loop

Figure 1. The Sarsa Control Algorithm

This reward function is external to the learning agent; it

is part of the environment but the implementer of the al-

gorithm must still specify this reward function. It is the

way in which the goal of the task is conveyed to the agent.

There are times, however, when it is difficult or impossible

to manually specify the reward function [1]. The next sec-

tion discusses inverse reinforcement learning — the task of

finding a reward function.

2.2 Inverse Reinforcement Learning

Inverse reinforcement learning is the problem of uncover-

ing a reward function. It has been characterized in [3] as

follows: Given 1) measurements of an agent’s behaviour

over time, in a variety of circumstances, 2) if needed, mea-

surements of the sensory inputs to the agent; 3) if available,

a model of the environment — Determine the reward func-

tion being optimized.

Two motivations for inverse reinforcement learning were

described in [4]; the first being its use in uncovering com-

putational models for animal and human learning. This has

also been applied to human economic behaviour. This first

case, used when examining the behaviour of agents, is de-

noted reward learning. The second motivation is that of

apprenticeship learning. As in the reward learning case,

the reward function is ascertained. The extension in the

apprenticeship learning case is that once the reward func-

tion is found, it is used to direct the learning of a learn-

ing agent. Thus it can be said that the uncovered reward

function describes the behaviour of an expert (although the

algorithm need not retrieve the exact reward function used

by the expert.) The following section describes apprentice-

ship learning in more detail.

2.3 Apprenticeship Learning via Inverse

Reinforcement Learning

In a traditional reinforcement learning task, the reward func-

tion is specified manually and a (near) optimal policy is
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found by the learning agent in order to maximize a numer-

ical reward signal. In the AL via IRL case, an expert is

thought to have some reward function which she is trying

to maximize. The algorithm used to perform the task of AL

via IRL (presented in Section 2.3.3, originally published in

[1]) does not necessarily recover the expert’s reward func-

tion. However, it will return a reward function which can

explain the expert behaviour and induce behaviour similar

to that of the expert’s, assuming adequate learning is done

using the uncovered reward function. In order for the al-

gorithm to work, it needs a set of expert trajectories. An

expert trajectory is a set of states; it is a set of states which

the expert observed while navigating its environment. It

is assumed that the expert has behaved a desirable manner

and thus the expert trajectory is a “good” trajectory through

an environment. Expert trajectories are discussed further in

the next section in the context of reward functions.

2.3.1 Reward Function

The reward function can be represented as the scalar result

of the dot product of a set of weights, w, and the feature

vector of a state, φ(s) as shown in equation 4. In imple-

menting apprenticeship learning, the reward function to be

recovered is represented as this equation.

R(s) = w · φ(s) (4)

The feature vector, φ, contains the state variables which

provide information about the environment’s current con-

figuration. If the agent is in state sk, then the features of the

state will be φ(sk). It is the weight vector, w, which then

determine the reward an agent receives in a particular state.

A different weight vector will thus yield a different reward

function. Thus, the apprenticeship learning algorithm must

return an appropriate weight vector — one which charac-

terizes a reward function which led the expert to behave in

the observed way.

As previously discussed, an expert trajectory is a walk

through the state space performed by the expert. The ex-

pert is guided through the state space by its expert reward

function. It is assumed that the expert’s reward function is

made up of an optimal weight vector, w∗ such that:

R∗(s) = w∗ · φ(s) (5)

where R∗(s) is the expert’s reward function.

The goal of apprenticeship learning algorithm is to re-

trieve a weight vector for characterizing a reward func-

tion which can explain the expert trajectories. In order

to do so, the algorithm makes use of the expert’s feature

expectations which are discussed in the following section.

2.3.2 Feature Expectations

The value of a policy π may be written as follows:

Es0∼D[V π(s0)] = E

[ ∞
∑

t=0

γtR(st)

∣

∣

∣

∣

π

]

(6)

= E

[ ∞
∑

t=0

γtw · φ(st)

∣

∣

∣

∣

π

]

(7)

= w · E

[ ∞
∑

t=0

γtφ(st)

∣

∣

∣

∣

π

]

(8)

Where s0 is drawn from D, the set of starting states. The

step from 6 to 7 follows from equation 4. Equation 8 may

be rewritten as:

Es0∼D[V π(s0)] = w · µ(π) (9)

where

µ(π) = E

[ ∞
∑

t=0

γtφ(st)

∣

∣

∣

∣

π

]

(10)

µ(π) is the vector of feature expectations of a particular

policy. It is defined as the expected discounted accumu-

lated feature value vector [1]. It represents a discounted

sum of the feature vectors which are expected to be seen

when following a particular policy. In order to ascertain the

feature expectations, given a policy, Monte Carlo methods

may be used to sample trajectories, or if the dynamics of

the environment are known and it is tractable, they may be

computed [1].

The apprenticeship learning algorithm relies on knowing

the expert’s feature expectations; that is knowing µE . In

practice an estimate for the expert’s feature expectations,

µ̂E is found empirically; this can be done since we assume

access to expert trajectories. An expert trajectory is the ex-

pert’s path through the state space: {s0, s1, . . .}. Suppose

there are m trajectories through the state space, then we

have: {s0, s1, . . .}
m

i=1. The empirical estimate for µE is

given by equation 11.

µ̂E =
1

m

m
∑

i=1

∞
∑

t=0

γtφ(s
(i)
t ) (11)

2.3.3 Apprenticeship Learning Algorithm

Once the expert feature expectations have been estimated,

the apprenticeship learning algorithm attempts to find a

policy, π̃, such that π̃ induces feature expectations close

to µ̂E [1].

The apprenticeship learning algorithm for doing so works

as follows:

1: Randomly pick some policy π(0), compute (or approx-

imate via Monte Carlo) µ(0) = µ(π(0)), and set i = 1.

2: Set w(1) = µE − µ(0) and µ̄(0) = µ(0)

3: Set t(1) = ||w(1)||2
4: if t(1) ≤ ǫ then

5: terminate

6: else

7: loop (while t(i) > ǫ):
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8: Using the RL algorithm, compute the optimal

policy π(i) for the MDP using R = (w(i))Tφ
9: Compute µ(i) = µ(π(i))

10: Set i = i+ 1
11: Set a = µ(i−1) − µ̄(i−2)

12: Set b = µE − µ̄(i−2)

13: Set µ̄(i−1) = µ̄(i−2) +
aT b

aTa
a

14: Set w(i) = µE − µ̄(i−1)

15: Set t(i) = ||w(i)||2
16: end loop

17: end if

[1] What this algorithm tries to accomplish is to find a

policy such that the agent’s performance under that policy

is close to that of the expert’s under the unknown reward

function R∗(s) = w∗ · φ(s). Such a policy π̃ will have

||µ(π̃)−µE ||2 ≤ ǫ, where ǫ is an arbitrarily small positive

number. This means that the feature expectations which

are induced by such a policy will be arbitrarily close to the

feature expectations of the expert.

3. RELATED RESEARCH - REINFORCEMENT

LEARNING AND MUSIC

Reinforcement learning depends on having a clearly de-

fined reward function which the agent then uses to guide

its learning. In a musical setting, it is not at all straightfor-

ward what the reward signal should be. In the paper Rein-

forcement Learning for Live Musical Agents, [5] presents

three ideas for musically meaningful reward signals.

The first idea is to match internal goals by the imposi-

tion of a rule set. This has been explored by [6, Franklin

et al.] who based the reinforcement signal on eight hand-

written rules for jazz improvisation. They used actor-critic

reinforcement learning using a non-linear recurrent neural

network for note generation. The second idea [5, Collins]

presents is to base the reward signal on the appreciation of

fellow participants (other musicians with whom the learn-

ing agent is performing) and audience members. He sug-

gests the use of tracking facial expressions and using phys-

iological indicators such as monitoring galvanic skin re-

sponse to gauge a listeners engagement, although these

ambitious approaches have not yet been explored. A third

reward signal he proposes is memetic success, that is, the

taking up of the agent’s musical ideas by others. This ap-

proach was explored by [5, Collins] using his music frame-

work Improvagent, where the learning agent improvised

with fellow musicians basing its reward on how much it

influenced the position in the state space, given its choice

of action; the effect of the action it took is measured by

whether or not it influenced the current status quo of the

musical piece (as played by the fellow musicians).

In another approach, the OMax system [7] used reinforce-

ment learning to weight links in a Factor Oracle (FO). A

FO is a finite state automaton constructed incrementally

in linear time and space. A musical sequence is used to

build up the FO. Each symbol in the sequence corresponds

to a state in the FO and reinforcement signals are used to

weight the links between these states. This can be used for

live musical interaction.

Most relevant to this research is the approach taken by

[8], in which apprenticeship learning via inverse reinforce-

ment learning was also used. The expert trajectories given

to the learning algorithm were Bach’s Chorales; the sys-

tem then managed to create original melodies whose over-

all shape was characteristic of Bach’s work. The research

presented in this document differs from that presented in

[8] in three ways.

Firstly, the music given to the system as expert trajecto-

ries in this research was generated by the author, as op-

posed to being given Bach’s Chorales as was done in the

work presented in [8].

Secondly, the state signal differed. A full discussion of

the state signal is deferred until Section 4.3, but briefly, the

state signal encoded the last eight actions taken, where an

action was a choice of note. In the [8] case, the state signal

was a tuple consisting of the position within the musical

piece, the current pitch of the melody, the difference be-

tween the current pitch and the pitch of the previous state,

the current chord type, the difference between the current

chord type and the root of the previous chord and finally

the status of the melody: whether it is resting, continuing

to sound a previous note or starting a new note.

The third difference is in the action space. The actions

available to MA where which note to play next. A more

comprehensive discussion is deferred to section 4.1. The

actions in the research by [8] denoted whether there was

a change in the current portion that the musical piece was

in, whether there was a change in the pitch of the melody,

whether there was a change in the root of the chord being

played, the resulting chord type from taking the action and

finally, the status of the resulting musical state: whether

this action is going to rest, hold or state a new note.

4. RESEARCH METHODOLOGY

4.1 Actions

The actions available to MA correspond to a range of notes

which the agent could play at each time step in the musical

piece. Each note was given a corresponding action num-

ber; action 0 was a rest, action 1 was a D, action 2 was

D♯3/E♭3 and so on. In total, a 2 octave range of notes was

used as the action space for the learning agent. Thus, there

were 25 actions available to MA. This is as a result of a

range of 2 octaves, each containing 12 notes, as well as the

rest action, in which no note is played.

4.2 Expert Trajectories

The melodies presented to MA as expert trajectories were

8 measures long with each measure containing 8 beats,

yielding a total of 64 possible positions in which an ac-

tion may be taken (here taking an action refers to playing

a note). One of the expert trajectories is shown in figure 2.

This figure shows the expert trajectory as a series of action

numbers. Each row in the matrix represents a measure and

each column represents a beat within that measure. Since

each note is held for one eighth of the measure, each action

corresponds to playing a note for an eighth note. Figure 2
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shows this same melody as a series of notes and figure 4

shows the melody as sheet music.

12 13 15 16 18 0 18 0

12 13 15 16 18 0 18 0

18 16 15 13 12 0 12 0

18 16 15 13 12 0 12 0

18 20 21 24 25 0 25 0

25 24 21 20 18 0 18 0

18 20 21 24 25 0 25 0

25 24 21 20 18 0 18 0

Figure 2. An expert melody as series of action numbers.

The rows correspond to the measures and the columns to

the beats within the measures.

C♯4 D4 E4 F4 G4 − G4 −
C♯4 D4 E4 F4 G4 − G4 −
G4 F4 E4 D4 C♯4 − C♯4 −
G4 F4 E4 D4 C♯4 − C♯4 −
G4 A4 B♭4 C♯5 D5 − D5 −
D5 C♯5 B♭4 A4 G4 − G4 −
G4 A4 B♭4 C♯5 D5 − D5 −
D5 C♯5 B♭4 A4 G4 − G4 −

Figure 3. This figure shows the same expert melody in

figure 2 as a series of notes.

� � �� �
� � �� �� �� � ��� �� � �

� ��� � � � � � �� ���

� � �� �� � � �� �� �� �� �� �� �� ��� � ��� � �
4 � ��� ��

� �� �� � � �� �� � �� �� �7

� � ��� �� ��
Figure 4. This figure shows the sheet music corresponding

to the expert trajectory shown in figures 2 and 3

The Melody Agent (MA) is a melody generating imple-

mentation of the apprenticeship learning algorithm. It re-

ceived a state signal composed of the last 8 actions it took.

An action in this context refers to a particular choice of

note.

4.3 States

The state signal which MA received was comprised of the

last eight actions it took. Thus, the following 8-tuple was

received by the agent as a state signal:

(x0, x1, x2, x3, x4, x5, x6, x7). Each xi refers to a pre-

vious action taken, where x0 was the most recent action

taken and x7 the least recent. The state space of MA was

258. This is as a result of the 25 actions available to MA.

These eight state variables were used to make up the fea-

ture vector, φ. Thus, the feature vector encoded the previ-

ous eight actions taken by the learning agent. The starting

state of the agent was one in which no actions had been

recorded in any of the last eight possible positions - each

element in the state signal had a value of 0. That is, the

initial state signal was (0, 0, 0, 0, 0, 0, 0, 0).

5. RESULTS

The parameters used for MA were as follows:

• γ = 1

• γ2 = 0.8

• ǫ = 0.15

• ǫ2 = 0.05

• α = 0.08

• Sarsa was given 100000 episodes 1

γ refers to the discount rate for calculating the feature ex-

pectations. The discount rate used in the Sarsa update rule

is γ2. ǫ was the exploration rate used by Sarsa and α was

its learning rate. ǫ2 was the stop condition used for the ap-

prenticeship learning algorithm, although this was not used

- for both experiments the program was stopped manually

once several policies had been produced.

5.1 Experiment One

The purpose of this experiment was to test whether MA

could generate new melodies given a set of expert melodies.

The set of expert melodies used as expert trajectories can

be heard at http://aiml.cs.wits.ac.za/orry/

audio.html. All of these expert trajectories are in the

key of D harmonic minor. Figures 5 - 8 illustrate how a new

melody is generated. Figure 5 is the new generated melody.

The red, blue and green highlighted portions of the melody

are all phrases which can be observed in one of the expert

melodies. The sheet music corresponding to this generated

melody is shown in figure 9. Each coloured phrase corre-

sponds to a phrase highlighted in the same colour in figures

6 - 8 (figures 6 - 8 show expert melodies). MA has learned

that the states which have been observed in the expert tra-

jectories are “good” states and thus it learns to navigate its

was to these states.

8 13 15 8 13 15 8 8

8 13 16 8 13 16 13 4

4 8 13 4 8 13 8 1

1 8 13 16 20 24 25 0

13 16 20 13 0 0 0 0

0 0 1 3 4 6 3 4

6 8 4 6 8 9 6 8

0 0 0 0 0 0 0 8

Figure 5. This generated melody can be heard at

http://aiml.cs.wits.ac.za/orry/Agents/

MA/Exp_1/1.mp3

1 An episode is one full iteration of the Sarsa algorithm.
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8 13 15 8 13 15 8 8

8 13 16 8 13 16 8 8

8 13 15 8 13 15 9 8

8 13 18 8 13 18 9 9

8 13 15 8 13 15 8 8

8 13 16 8 13 16 8 8

8 13 15 8 13 15 9 8

8 13 18 8 13 18 9 9

Figure 6. This expert melody can be heard at

http://aiml.cs.wits.ac.za/orry/Expert_

Trajectories/Melody/t5.mp3

13 16 20 13 16 20 16 8

8 13 16 8 13 16 13 4

4 8 13 4 8 13 8 1

1 8 13 16 20 24 25 0

13 16 20 13 16 20 16 8

8 13 16 8 13 16 13 4

4 8 13 4 8 13 8 1

1 8 13 16 20 24 25 0

Figure 7. This expert melody can be heard at

http://aiml.cs.wits.ac.za/orry/Expert_

Trajectories/Melody/t6.mp3

1 3 4 6 3 4 6 8

4 6 8 9 6 8 9 12

8 9 12 13 9 12 13 15

12 13 15 16 13 15 16 18

15 16 18 20 16 18 20 21

18 20 21 24 20 21 24 25

25 20 24 21 20 21 24 25

0 0 0 0 0 0 0 0

Figure 8. This expert melody can be heard at

http://aiml.cs.wits.ac.za/orry/Expert_

Trajectories/Melody/t7.mp3

q qq q q q qq q q q qq q q qq� � q q q q qq q
� � �q � � � qq q q q qq q q q4

�
q q q q q�q�

� � ��
�

�
q

� � �
qqq

7

� q q� q qq
Figure 9. This figure shows the sheet music corresponding

to the generated melody shown in figure 5

5.2 Experiment Two

In this experiment, the learning agent used ten D harmonic

minor expert trajectories along with an additional ten melodies

in the key of D major. These trajectories can be heard

at http://aiml.cs.wits.ac.za/orry/audio.

html. Two new melodies were generated in this experi-

ment. Both of these melodies contained phrases from the

D-harmonic minor as well as the D-major expert trajec-

tories. These melodies can be heard at http://aiml.

cs.wits.ac.za/orry/Agents/MA/Exp_2/1.mp3

(sheet music shown in figure 10) and http://aiml.

cs.wits.ac.za/orry/Agents/MA/Exp_2/2.mp3

(sheet music shown in figure 11).
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Figure 10. A generated melody.
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Figure 11. Another generated melody.

6. DISCUSSION

The results shown in the previous section came from one

run of the apprenticeship learning algorithm. These results

show that the apprenticeship learning algorithm is capable

of producing original melodies which are similar to the ex-

pert melodies. MA shows signs of learning but it appears

that the start state of (x, 0, 0, 0, 0, 0, 0, 0) (where x is an ac-

tion) has influenced learning. Since the state of the learn-

ing agent was the last eight notes played, the first state of

all the expert trajectories was (x, 0, 0, 0, 0, 0, 0, 0), where

0 ≤ x ≤ 24 is an action. This is because no notes have

been played prior to the first one, and as a result all actions

prior to the first one are encoded as zeroes. That is, they

are the action in which no note has been played. This has

affected learning; as can be seen from the results, the pat-

tern 0000000x, where 0 ≤ x ≤ 24 is an action is prevalent

in the generated melodies. This is likely due to the fact that

the algorithm considers this a good state to be in, as it was

observed in all of the expert trajectories.

Although the corpus of expert trajectories was limited to

D harmonic minor in the first experiment and D major and

D harmonic minor in the second, it is not necessary for the

expert trajectories to be in these keys. The choice of using

only D major in the first experiment was to test whether the

output would be predominantly in this key, which it was.

In the second experiment, it was hoped that the resulting

melodies would be in either D major or D harmonic minor.

The result was that the melodies exhibited phrases from
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both the D major and the D harmonic minor corpora. This

is likely due to the state signal not conveying enough infor-

mation about the melodies; the learning agent has no way

of knowing that it is “good” to stay in a particular key.

These experiments represent a first attempt at using AL

via IRL with the conceptually simple action and state spaces

discussed in Sections 4.1 and 4.3 respectively. Although

the state space will likely need to change in order for the

learning agent to have some indication of key, it is hoped

that the state space need not be overly complicated.

7. CONCLUSIONS

This paper provides the initial results experiments done us-

ing MA. The results show that given a set of expert tra-

jectories, MA can create new melodies which are stylisti-

cally similar to the expert trajectories. These results show

that implementing apprenticeship learning via inverse rein-

forcement learning in this way can lead to a learning agent

which can generate new melodies which are different to the

expert melodies whilst still maintaining those melodies’

characteristics. The results show that the algorithm can re-

turn generated melodies which clearly resemble the expert

melodies, but are put together in unexpected ways. This

work is presented as a proof of concept, rather than a final

implementation of this approach.

8. FUTURE WORK

Apprenticeship learning via reinforcement learning shows

potential as a way to algorithmically generate music. The

results presented in this paper show that it is possible to

use this algorithm to create new melodies based on ex-

pert melodies. The approach taken in this research can be

improved upon in many ways. The most obvious way to

extend this research is to present the learning agent with

more expert trajectories. As more trajectories are added,

the learning agent will have a greater base from which to

extract the rewards which guided the creation of those tra-

jectories. Another way the research can be extended is by

providing a deeper note resolution; currently, the learning

agent could only play eighth notes; this could be extended

so that the agent could play sixteenth notes, allowing for

more variety in the type of music it can handle. Further,

the agents could be extended to play triplets, quintuplets

and even septuplets.

Another interesting approach is to create multiple music

agents and to allow the learning agents to learn in a way

that promotes collaborative music generation; for example,

if its seen that whenever a bass drum is played, a certain

note is played, provide a mechanism for the learning agent

to take that into account. There are many approaches one

could take to implement a learning agent which makes use

of reinforcement learning for music generation. This re-

search presents one such approach which has been shown

to generate new melodies which are unpredictable but co-

herent.
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