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ABSTRACT

In this paper, we introduce an approach for automated test-

ing of music competency in rhythm production of ninth-

grade and tenth-grade pupils. This work belongs in the

larger context of modeling ratings of vocal and instrumen-

tal performances. Our approach relies on audio recordings

from a specialized mobile application. Rhythmic features

were extracted and used to train a machine-learning model

which was targeted to approximate human ratings. Using

two classes to assess the rhythmic performance, we ob-

tained a mean class accuracy of 0.86.

1. INTRODUCTION

Music making is an integral part of music education in

schools. It also forms the backbone of cultural participa-

tion in adulthood. In different fields of research such as

music education and music therapy, the assessment of mu-

sic performance and musical abilities is of interest. Music

making is traditionally evaluated on an individual basis and

results in testing procedures that can not be applied to large

scale evaluations. One solution to this problem is simulta-

neous group testing.

The assessment of individual performances is an extremely

time-consuming task. For example, a music teacher assess-

ing five school classes, each consisting of 25 pupils per-

forming for 5 minutes each, would have to listen to over 10

hours of recorded material. Therefore, a tool for both a si-

multaneous recording of all pupils as well as an automatic

evaluation would be desirable when performing large-scale

evaluation studies.
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2. GOALS

Our goal was to measure the music making skills of pupils

in German secondary school courses within the framework

of competency modeling [1]. More precisely, we wanted

to record vocal and instrumental music performances and

develop a system for the automatic assessment of these

recorded performances.

In order to add another facet to our current competency

model that includes vocal and instrumental abilities [2], we

started to record rhythm tasks using a special mobile appli-

cation. Using an automatic rhythm analysis algorithm and

annotations of the performance quality by music experts,

we trained a statistical classification model of the experts’

ratings.

3. PREVIOUS APPROACHES

In our own works [2, 3], we proposed how to estimate

music competency of vocal and basic instrumental perfor-

mance. Here, we devised a specialized mobile application

that was used for (single voice) melodic input without re-

quiring previous instrumental instruction [4]. To assess

secondary pupils, we used the 5-point evaluation rubric

originally developed by Hornbach and Taggart to assess

elementary-age singers [5]. Its authors reported satisfac-

tory inter-judge reliability values (r = 0.76 to r = 0.97).

Other authors outside education typically use tapping ex-

periments and timing analysis rather than human raters [6].

Rhythmic synchronization and imitation has also been stud-

ied in [7, 8, 9].

4. NOVEL APPROACH

In our novel approach, we build upon the results and feed-

back obtained during our previous experiments dealing with

vocal and instrumental performances. The focus on rhyth-

mic competency made it necessary to develop new method-

ologies for testing and automatic evaluation, which will be
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presented in this section.

4.1 Instrument Recording & Data Acquisition

Figure 1. Screenshot of Colored-Music-Grid (CMG) app

for rhythm tasks. The red and blue areas trigger the high

and the low drum sound, respectively.

The participants in our experiments were 460 ninth-grade

pupils. Each pupil worked at a separate workplace in groups

of up to 25 pupils per classroom. Every workplace con-

tained a laptop, a tablet computer, and a headset. The

workplaces were separated using custom-made partition

walls. The laptops were used to present the instructions

of the different musical tasks consisting of text and scores

to the pupil, and a headset was used to play audio examples

and backing tracks. All laptops in the classroom were con-

nected in a network, such that every task could be started

simultaneously by the teacher on a separate computer.

A 7-inch tablet with a multitouch surface was used as mu-

sical instrument. Figure 1 shows a screenshot of the “Col-

ored Music Grid” (CMG) app that we developed. Touching

the red and blue areas triggers a high and a low percus-

sive sound, respectively. Furthermore, this app provides

a second mode that functions as a musical instrument for

melody tasks as previously described in [4]. Each tablet

was fastened on a holder above the laptop. The 27 rhythm

tasks consisted of various one to two bar rhythm patterns,

which were supposed to be performed alongside two dif-

ferent eight bar backing tracks.

Figure 2. Example rhythm pattern.

Figure 2 illustrates an example rhythm pattern that was

shown on the laptop screen. Additionally, the task instruc-

tions were given to the pupils via headset. In some cases,

the instructions were reduced to a single sentence, in some

instructions the backing track or the respective pattern was

played as an audio example. This was followed by five sec-

onds of silence, during which the pupils could practice the

pattern. Next, the actual task instructions were played to

the pupils starting with a one bar of count-in followed by

the backing track for the current task. Each instrument per-

formance was recorded as a separate audio track (44.1 kHz

and 16 bit). The total dataset used in this paper consists of

8434 individual audio recordings.

4.2 Annotation

All recordings were evaluated by at least two out of 16

music students. For this evaluation, we used a six point

ratings scale, which was adapted based on an established

scale for the assessment of students singing performance

[5]. For each recording, a rounded mean value was cal-

culated from the two ratings. Depending on whether the

task was rated by two or three raters, inter-rater consis-

tency was estimated using Intraclass Correlations ICC(2,2)

or ICC(2,3). Here, we used a two-way, random effect ICC,

because two or three randomly selected assessors both rated

all rhythm performances of one of the 27 tasks. ICCs var-

ied between .67 and .93.

4.3 Audio Feature Extraction

Since we wanted to evaluate an audio recording of the

rhythmic output of CMG, we needed to devise a suitable

signal processing. In the following, we describe how the

rhythm recordings were converted into an approximate tran-

scription and what additional features were deduced from

that.

4.3.1 Spectral Estimation

Based on a given audio recording of a rhythm performance,

we first compute the Short Time Fourier Transform (STFT)

using a blocksize of 2048 and a hopsize of 512. The given

sampling rate (see Section 4.1) corresponds to a temporal

resolution of approximately 10 ms. In the next section, we

will explain how the drum envelope signals are extracted

from the magnitude spectrogram M(k, n) with k denoting

the frequency bin and n denoting the time frame.

4.3.2 Drum Envelope Estimation

The CMG app uses two fixed samples for the low and the

high percussion sounds without any dynamic changes. As

can be observed in the upper subplot of Figure 3, the per-

cussion spectra are well-separated in the magnitude spec-

trogram with barely any overlap in frequency ranges. Due

to these idealized conditions, we apply a simple approach

for drum envelope estimation. Based on the known fre-

quency centroids of the drum sounds (flow = 1593Hz

and fhigh = 2907Hz), we extract the magitude envelopes

x̂low(n) and x̂high(n) directly from the rows in M(k, n)
that correspond to the frequency centroids. The middle and

lower subplot of Figure 3 illustrate two examples of mag-

nitude envelopes of the two drum sounds for the excerpt

shown in the spectrogram above.
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In addition to the estimated drum envelopes, the correct

reference drum tracks are given as MIDI files for each task.

The MIDI files have two channels, one channel per percus-

sion instrument. Based on these MIDI files, we generate

two reference envelope functions xlow(n) and xhigh(n) for

each task by convolving the onset impulse function of each

instrument with a Hanning window of 70ms width.
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Figure 3. Excerpt from magnitude spectrogram M(k, n)
of drum recording (top). Time and frequency axis are given

in seconds and Hz. Frequency centroids of high drum

(blue) and low drum (red) are indicated as dotted horizon-

tal lines. Resulting drum envelopes for high drum and low

drum are given in the middle and lower subplot.

4.3.3 Envelope-based Features

All features described in Section 4.3.3 and 4.3.4 (denoted

as F with a corresponding subscript) are extracted simi-

larly for the low and the high percussive envelope, hence

we omit the subscripts “low” and “high” for better read-

ability.

The first group of features are extracted in order to com-

pare the estimated drum envelope x̂(n) and the correspond-

ing reference drum envelope x(n) function. After x̂(n) and

x(n) are normalized to a maximum of 1, we compute the

relative envelope energies

Fact =
1

Nx̂

Nx̂∑

n=1

x̂(n) and (1)

Fact,ref =
1

Nx

Nx∑

n=1

x(n) (2)

as features to measure the drum activation. Nx̂ and Nx

denote the number of items in x̂ and x. Also, we use the

activation ratio

FactRatio =
Fact

Fact,ref

(3)

as feature.

In the next step, we compute the cross-correlation rx(τ)
between x̂(n) and x(n) to investigate to what extent both

envelope functions coincide. Two features are obtained.

The envelope similarity is measured by the maximum cross-

correlation value FsimEnv = maxτ rx(τ) and the envelope

synchronicity is measured by the corresponding absolute

shift value FsyncEnv = |τmax|.

In addition to the cross-correlation, we count the num-

ber of local maxima in x̂(n) and x(n) above a magnitude

threshold of 0.05 as Nmax,x̂ and Nmax,x. Here, the intuition

is that local maxima in the envelope signal indicate indi-

vidual note events. We compute features from the absolute

difference over the local maxima number as

FnumPeakDiff = |Nmax,x −Nmax,x̂| (4)

and the ratio between the peak densities

FpeakDensRatio =
Nmax,x/Nx

Nmax,x̂/Nx̂

. (5)

Finally, we compute a vector dmax with the temporal dis-

tances of adjacent local maxima in the envelope function

x(n) . We compute the maximum, the mean, the variance,

and the range over dmax as simple features to measure the

amount of tempo fluctuation.

4.3.4 Features based on the Log-lag Autocorrelation

We compute the log-lag autocorrelation functions

(LL-ACF) from x̂(n) and x(n) as previously proposed in

[10, 11, 12] over the tempo range of

10 bpm ≤ T ≤ 600 bpm with a resolution of 36 bins per

octave. The LL-ACF represents a rhythmic pattern on a

logarithmically-spaced lag axis and is comparable to the

scale-transform [13]. The lags can be interpreted as recip-

rocals of the tempo. This means that small lags correspond

to very high tempi, whereas lags to the end of the function

correspond to extremely low tempi. The same rhythmic

pattern played in different tempi result in similar LL-ACFs

that are just shifted along the lag axis. The application

of suitable distance measures for comparing LL-ACF has

been discussed in [14, 15].

The LL-ACF of the estimated and reference drum enve-

lope are denoted as lx̂(T ) and lx(T ). Similarly as before,

we compute the cross-correlation rl(τ) between lx̂(T ) and

lx(T ) and take the maximum cross-correlation value

FsimLLA = maxτ rl(τ) and the corresponding shift

FsyncLLA = |τmax| as features.

Next, we compute the energy sum

FenSumLLA =
∑

T

lx(T ) (6)

and the ratio

FenRatioLLA =

∑
T lx(T )∑
T lx̂(T )

(7)

as features. As a next step, we extract the number of lo-

cal maxima Nmax,l,x̂ and Nmax,l,x to describe both LL-ACF

functions (we only consider maxima above 5 % of the high-

est peak). We compute the difference and the ratio between

the number of peaks to measure the rhythmic similarity be-

tween the estimated and the reference drum envelope as

Fllacf,peakDiff = Nmax,l,x̂ −Nmax,l,x and (8)

Fllacf,peakRatio =
Nmax,l,x̂

Nmax,l,x

. (9)

Additionally, we compute average distance between adja-

cent local maxima in lx(T ). In total, we obtained a

40-dimensional feature vector.
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4.4 Automatic Modeling of Expert Ratings

We used a machine-learning approach to model the ex-

pert rating with the proposed audio features. The classifier

model is trained based on expert ratings of a given training

set. We used a Support Vector Machine (SVM) with the

Radial Basis Function (RBF) kernel as classifier. SVM is

a binary discriminative classifier that attempts to find the

optimal decision plane between the feature vectors of the

different training classes [16].

5. EVALUATION

5.1 Dataset

The dataset used in this paper consists of 8434 audio record-

ings with corresponding averaged performance ratings be-

tween 1 and 6. Figure 4 shows a histogram over the number

of items for each class. Apart from class 1 and 6, the items

are fairly well-balanced.

1 2 3 4 5 6
0

500

1000

1500

2000

Class

Figure 4. Number of items in the dataset for all six classes.

5.2 Experimental Procedure

5.2.1 Class Mapping

Based on the six-step rating scale discussed in Section 4.2,

we investigated different class mappings to reduce the num-

ber of classes and thus to reduce complexity of the model-

ing task. In particular, we compared the 9 different class

mappings as shown in Table 1. For each mapping, the six

existing classes are mapped to two or three merged classes

(denoted as C1, C2, and C3). Then, classifier models are

trained based on the merged class annotations.

5.2.2 Cross-validation

For each mapping, we performed a 10 fold cross-validation

and averaged the mean class accuracy over all folds. Since

the class items are imbalanced as shown in Figure 4, we

used a stratified cross-validation, i.e., we ensured that the

proportion of items among different classes is kept approx-

imately constant in each cross-validation fold. Further-

more, since we used Support Vector Machines classifier,

we had to make sure that the number of items are bal-

anced over all classes before training the model. Therefore,

we used sampling with replacement, i.e., we increased the

number of items in the smaller classes by randomly sam-

pling from the existing data. At the same time, we ensured

that similar items are never assigned as training and test

data at the same time in the cross-validation procedure.

Table 1. Class mappings investigated in the evaluation

experiment based on the original 6 classes. First column

shows number of reduced classes. Second to fourth col-

umn show the original classes that are merged. Last col-

umn shows the mean class accuracy for the automatic clas-

sification (the highest value is emphasized in bold print).

The last row gives the classification result if no class map-

ping is performed as reference.

# # Merged Classes Mean

classes C1 C2 C3 Class Acc.

M1 2 1,2 4,5 - 0.86

M2 2 1,2,3 5,6 - 0.85

M3 2 1,2,3 4,5,6 - 0.80

M4 3 1,2 4,5 6 0.77

M5 3 1,2 3 5,6 0.69

M6 3 1,2 3,4 5 0.64

M7 3 1,2 3 4,5 0.63

M8 3 1,2 4 5,6 0.68

M9 3 1,2 3,4 5,6 0.68

M10 6 No Mapping (6 classes) 0.47

In each fold, we optimize the parameter values of γ and C
of the RBF kernel function using a two-fold grid search as

proposed in [17] with step sizes of 3 and 0.5 for the coarse

and the fine grid search. Before each classifier training,

the features are normalized to zero mean and a standard

deviation of 1.

6. RESULTS & CONCLUSIONS

The last column of Table 1 summarizes the mean class ac-

curacy values that we obtained for the different class map-

pings. It can be observed that by reducing the number of

classes from six to two, the classification accuracy can be

improved up to 0.86.

An initial experiment with the original six classes (with-

out any class mapping) showed an accuracy of 0.47 and

revealed strong confusions between adjacent classes, espe-

cially between and towards classes 3 and 4. Our results

indicate that it seems beneficial to merge adjacent classes

to more fuzzy categories such as good and bad. These cat-

egories can often be sufficient for an assessment of music

performance.

Also, the removal of one of the medium classes (3,4) im-

proved the classification results, as can be seen for instance

when comparing M3 and M2 or M7 and M8, respectively.
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58(4), pp. 500–521, 2012.

[2] C. Dittmar, J. Abeßer, S. Grollmisch, J. Hasselhorn,

and A. Lehmann, “Automatic singing assessment of

pupil performances,” in Proceedings of the 12th Inter-

national Conference on Music Perception and Cogni-

tion (ICMPC) and 8th Trinnial Conference of the Euro-

pean Society for the Cognitive Sciences of Music (ES-

COM), 2012.

[3] A. Lehmann and J. Hasselhorn, “Assessing children’s

voices using hornbach and taggart’s (2005) rubric,”

in Proceedings of the 12th International Conference

on Music Perception and Cognition (ICMPC) and 8th

Trinnial Conference of the European Society for the

Cognitive Sciences of Music (ESCOM), 2012, pp. 572–

573.

[4] J. Abeßer, J. Hasselhorn, C. Dittmar, A. Lehmann, and

S. Grollmisch, “Automatic quality assessment of vo-

cal and instrumental performances of ninth-grade and

tenth-grade pupils,” in Proceedings of the 10th Interna-

tional Symposium on Computer Music Modelling and

Retrieval (CMMR), 2013.

[5] C. M. Hornbach and C. C. Taggart, “The relation-

ship between developmental tonal aptitude and singing

achievement among kindergarten, first-, second-, and

third-grade students,” Journal of Research in Music

Education, 2005.
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