
An Experimental Classification of the Programming

Patterns for Scheduling in Computer Music Programming

 Hiroki NISHINO

 NUS Graduate School for

Integrative Sciences & Engineering,

National University of Singapore

g0901876@nus.edu.sg

ABSTRACT

How to schedule a desired temporal pattern is one of the

most elementary issues to consider when implementing a

computer music system, and there already exist several

major programming patterns for scheduling. However,

such computer music-specific programming patterns

seem to not be discussed as frequently as general pro-

gramming patterns, and thus there may still be some ne-

cessity for additional clarification.

For instance, the programming pattern called temporal

recursion may be better described as self-rescheduling,

when contrasted with other programming patterns that

perform similar tasks. In this paper, we describe four

programming patterns that can be seen in the existing

computer music languages and propose the names for

these programming patterns. Such a discussion can bene-

fit by initiating the discussion on the computer music-

specific programming patterns in our community, to

avoid an unnecessary ambiguity in further investigation

of the related programming patterns.

1. INTRODUCTION

As computer music is essentially a time-based art, it is

inevitable to consider how to realize desirable temporal

behaviour when implementing a computer music pro-

gram. Even when coding a simple program that only re-

peats a prepared phrase composed of a few notes, one

must realize such temporal behaviour by scheduling each

event at its own expected timing. Further labour would be

required to perform more complex musical tasks, espe-

cially when multi-tasking must be involved.

Many computer music programming languages or soft-

ware frameworks have been designed to support domain-

specific needs for computer music applications; yet,

while it can significantly reduce the effort made by a pro-

grammer in comparison with the effort required when

writing a computer music program from scratch, its soft-

ware design may also give certain constraints as to how

such temporal behaviour of a musical task should be pro-

grammed, depending on the design of the language.

Such a discussion on the programming patterns
1
 with

respect to the temporal behaviour seems still unpopular in

the computer music community. However, as live-coding

[4] suggests, recent creative musical practices often in-

volve some programming patterns with respect to time to

a significant degree; unlike in the earlier decades when

only expert computer music programmers dealt with such

programming issues, even computer musicians without

expert programming skills must face the same issues to-

day. Considering such situations of our time, it is desira-

ble to make some effort to classify the existing program-

ming patterns to support further sound discussion. In this

paper, we describe an experimental classification of sev-

eral existing programming patterns in textual computer

music languages.

2. TWO MODELS FOR SCHEDULING

We first classify how the scheduler is involved in a pro-

gramming pattern into two different models: explicit-

scheduling and implicit-scheduling. While many comput-

er music languages and frameworks are indeed capable of

both models of scheduling, it is beneficial to provide such

technical terms for further discussion of the programming

patterns, as it can directly influence the resulting imple-

mentation.

2.1 Explicit-scheduling

In some computer music languages and frameworks, a

user program is expected to explicitly use the APIs pro-

vided in the programming environment for scheduling a

task or an event at the desired timing.

For instance, Impromptu [13] and SuperCollider [16]
 2

are languages of this kind. In Impromptu, the ‘schedule’

function is used to schedule a call to the function by giv-

ing it as an argument, together with the timestamp.

SuperCollider provides several different objects for

scheduling (e.g., ‘SystemClock’, ‘AppClock’, and ‘Tem-

poClock’) which can be passed a ‘Routine’ object or a

‘Function’ object to be executed at the specified timing.

 We propose explicit-scheduling, as the name for this

method of scheduling, as the scheduler is visible even at

1
 In [10], Riehle and Züllighoven explain programming pattern as “a

pattern whose form is described by means of programing language

constructs”, which is also “based on programming experience”, and “we

use these patterns to implement software design”.
2
 Functions are first-class citizens in both Impromptu and SuperCollid-

er.

Copyright: © 2014 Hiroki NISHINO. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution License

3.0 Unported, which permits unrestricted use, distribution, and repro-

duction in any medium, provided the original author and source are

credited.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1156 -

the surface level of the code and a user program accesses

its feature explicitly.

2.2 Implicit-scheduling

On the contrary, in some other computer music lan-

guages, the underlying schedulers may not be directly

visible at the user program level. For instance, in LuaAV

[14], its wait method yields the current coroutine and asks

the scheduler to resume it again after the given duration

or when a certain event occurs. In a strongly-timed pro-

gramming language, such as ChucK [15] or LC [9], the

assignment to the special variable ‘now’ will suspend the

current thread and the underlying scheduler resumes the

thread at the given timing. In such languages, users are

indeed implicitly utilizing the scheduler in the underlying

software framework, while it seems just as a simple func-

tion call or an assignment at the surface level of the user

code.

 We propose implicit-scheduling for this manner of

scheduling, in contrast to explicit-scheduling, as the un-

derlying scheduler is not directly visible at the user pro-

gram level.

3. PROGRAMMING PATTERNS FOR

SCHEDULING

3.1.1 Temporal loop

Implicit-scheduling may be inserted within a looping con-

trol structure, interleaved between the sub-tasks in a

computer music program. We propose ‘temporal loop

pattern’ for the name of this programming pattern. While

it seems simple and trivial as a programming pattern,

giving a name to the programming pattern is valuable

even just to distinguish it from the other programming

patterns related to computer music programing.

Figure 1 [15, p.43] is a typical example of temporal loop

pattern, often found in ChucK programs. As shown, im-

plicit-scheduling is inserted within a loop structure to

realize a desired temporal behaviour.

3.1.2 Repetitive-scheduler

In some computer music languages, the API for explicit-

scheduling may have the features for repeatedly schedul-

ing a task given as an argument. We propose the name,

‘repetitive-scheduler’, for this programming pattern. Fig-

ure 1 describes a simple example of this programming

pattern in SuperCollider, which is taken from its help file

[2]. In the Figure 2 example, the SystemClock object and

its sched method is utilized. As described, the System-

Clock.sched method reschedules and executes the given

function repeatedly, when the function returns a float

value, interpreting it is duration before the next occur-

rence. Returning nil will stop this repetitive scheduling.

3.1.3 Temporal-recursion

It is also often possible to write a function so that it can

reschedule itself again. Unlike the repetitive-scheduler

pattern described above, in which the scheduler itself

repeatedly schedules the same tasks, it is the callee func-

tion itself that is responsible for scheduling in this pro-

gramming pattern.

As it is discussed in [12], while a significantly similar

programming pattern was already presented in the

MOXIE [3] language and the CMU MIDI toolkit [5] in

earlier decades, it is sort of ‘rediscovered’ by Sorensen,

who developed the Impromptu computer music language.

Sorensen and his colleagues named this programming

pattern ‘temporal recursion’. Figure 3 describes an ex-

ample of temporal recursion given in [13]. As shown, this

programming pattern calls the API for rescheduling the

function itself and thus involves explicitly-scheduling.

4. DISCUSSION

So far we described three programming patterns frequent-

ly seen in the existing computer music languages. While

the temporal loop pattern involves implicit-scheduling,

the other two involve explicit-scheduling.

*sched(delta, item)
The float you return specifies the delta to

resched the function for. Returning nil stops

the task from being rescheduled

 SystemClock.sched(0.0, { arg time;

 time.postln;

 rrand(0.1, 0.9)

 });

 SystemClock.sched(2.0, {

 Ĉ2.0 seconds laterĉ.postln;

 nil

 });

Figure 2. An example that utilizes SystemClock.sched

method call in SuperCollider [2].

;; periodic cycle called every 1000 ticks

;; with incrementing integer counter

(define periodic

 (lambda (time count)

 (print ‘count:> count)

 (schedule ;; start cycle

 (+ time 1000) periodic

 (+ time 1000) (+ count 1))))

(periodic (now) 0)

Figure 3. An example of temporal-recursion as

Sorensen et al. describe in [13].

01: // synthesis patch

02: SinOsc foo => dac;

03:

04: // infinite time loop

05: while(true)

06: {

07: // randomly choose a frequency

08: Std.rand2f(30, 1000) => foo.freq;

09: // advance time

10: 100::ms => now;

11: }

Figure 1. A simple strongly-timed program in ChucK [15, p.43].

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1157 -

One question we would like to raise at this point is

whether ‘temporal recursion’ is really appropriate for the

programming pattern as Sorensen describes, when con-

sidering which is the better classification. While the defi-

nition of the function ‘periodic’ in Figure 3 is recursive in

that the definition of the function refers to the function

itself, the function does not make a direct recursive call to

itself – it asks the scheduler to reschedule itself.

We would like to propose another example for further

discussion. The Figure 4 example is a recoded version of

the Figure 1 ChucK example. As shown, the main loop is

replaced with a recursive function call. Unlike the Figure

3 example in Impromptu, the example is based on implic-

it-scheduling and does not involve any instance of the

scheduler at the surface level of the code.

Moreover, the Figure 4 example performs a direct recur-

sive call within the function itself, as seen in many well-

known recursive examples, such as the Tower of Hannoi

and the Fibonacci number [6]; it is clearly a very simple

example of recursion. Tail-call optimization [8, p.58] can

be also safely applied to avoid wasting the frame stack.

When classifying these programming patterns, it would

be desirable to contrast the related programming patterns

as much as possible; in the earlier sections, we proposed

the terms, explicit-scheduling and implicit-scheduling for

this purpose, aiming to support further clarification re-

garding the difference in the scheduling models among

these programing patterns.

Form this point of view, the Figure 2 example and the

Figure 3 example are the programming patterns that be-

long to the explicit-scheduling group, and the Figure 1

example and the Figure 4 example belong to implicit-

scheduling. One might note that the programming lan-

guages that involve implicit-scheduling indeed include a

statement that causes the passage of the time within

themselves, while the other programming patterns that

utilize explicit-scheduling do not enclose any statement to

invoke the passage of the time; when utilizing explicit-

scheduling, the part of the tasks related to the passage of

the time looks as if it is performed within the underlying

scheduler, not within the user code. In other words, the

Figure 1 and 4 examples clearly include ‘temporal’ be-

haviour within the programming patterns, whereas Figure

2 and 3 examples exclude it.

In addition, the programming pattern in the Figure 3 ex-

ample by Sorensen may be more similar to the continua-

tion-passing style [1], as the programming pattern passes

where the computation should continue to the scheduler,

and it is the scheduler that invoke the given function.

 Considering such an issue, it may be more appropriate

to call the programming pattern in the Figure 3 example

‘self-rescheduling’ rather than ‘temporal recursion’. Pos-

sibly, when considering the contrast between the recur-

sion and the loop control structure, it may be better to call

the programming pattern as seen in the Figure 4 ‘tem-

poral recursion’ instead.

It seems also beneficial to consider whether the function

itself performs repetition or not. In this sense, the Figure

1 and Figure 2 examples belong to the same category,

whereas the Figure 3 and Figure 4 examples belong to the

opposite category; the latter group schedule the next oc-

currence of the functions explicitly within themselves,

while the next occurrence of a task is controlled external-

ly by a looping control structure in the former group.

By summarizing the above discussion, a 2D matrix to

classify these four programming patterns can be drawn.

One axis is explicit-scheduling or implicit-scheduling.

The other axis categorizes whether the repetition is con-

trolled internally or externally within the part of the code

to play a certain pattern. In the examples in Figure 3 and

Figure 4, the functions to play patterns internally re-

schedule themselves to the repetition. On the other hand,

in Figure 1 and Figure 2, the repetition is realized exter-

nally by a loop control structure (Figure 1) or by the un-

derlying scheduler of the software framework (Figure 2).

Thus, a matrix to classify these four programing patterns

can be made as in Table 1. One may notice that the word

‘temporal’ is used for the programming patterns that in-

volve implicit-scheduling, while the word ‘schedule’ is

used to name the other patterns that involve explicit-

scheduling. One view that possibly justifies such naming

(and renaming of Sorensen’s ‘temporal recursion’ to

 Where does the passage of the time seem to

occur mainly?

 implicit-scheduling explicit-scheduling
within the user code within the scheduler

W
h

a
t

c
o

n
tr

o
ls

 t
h

e
 r

e
p

e
ti

ti
o

n
?

T
h

e
re

p
et

it
io

n
 i

s

 r
ea

li
ze

d
 b

y

th
e

fu
n

ct
io

n

to
 p

la
y

th
e

p
at

te
rn

it

se
lf

 i
n

-

te
rn

a
ll

y

Temporal Recursion

(as we propose the

name for the Figure 4

example)

 Self-Rescheduling

(a possible new name

for Sorensen’s

‘temporal recursion’,

shown in Figure 3)

T
h

e
 r

ep
et

it
io

n
 o

f
a

 p
at

te
rn

is

p

er
fo

rm
ed

e
x

te
rn

a
ll

y
b

y

a
lo

o
p

co
n

tr
o

l
st

ru
ct

u
re

o

r
th

e

u
n

d
er

ly
in

g
 s

ch
ed

u
le

r

Temporal Loop

(as described in the

Figure 1 example)

Repetitive-Scheduler

(as described in the

Figure 2 example)

01: // synthesis patch

02: SinOsc foo => dac;

03:

04: //recursion, instead of an infinite loop.

05: fun void recur(){

06: // randomly choose a frequency

07: Std.rand2f(30, 1000) => foo.freq;

08: // advance time

09: 100::ms => now;

10: recur(); //make a recursive call

11: }

12:

13: //call recur() to start the temporal recursion.

14: recur();

Figure 4. A simple strongly-timed program in ChucK,

 recoded with recursion.

Table 1. An Experimental Classification of the programming

patterns for scheduling in computer music programming.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1158 -

‘self-rescheduling’) is that the behaviour of the pro-

gramming patterns that utilize implicit-scheduling seems

to involve the passage of time within, as each thread is

actually suspended (or seems conceptually suspended at

least at the surface level of the code), regardless of the

actual implementation.

It should be noted that how a user stops scheduling can

differ with the patterns. When using the self-rescheduling

pattern, a user often redefines a callee function so that it

does not reschedule itself further. Instead, a user often

simply kills the thread when a temporal loop pattern is

used. In addition, how the repetition of a phrase is termi-

nated can also differ. In the former example of self-

rescheduling, as the termination is achieved by redefini-

tion of a callee function, all the sounds scheduled in the

previous call are played by the scheduler, while in the

latter example of a temporal loop, theu can be immediate-

ly terminated when the thread is killed; thus, while these

patterns seem similar in functionality, the actual behav-

iour in practice can differ.

5. CONCLUSION

In this paper, we described four programming patterns in

total, which are frequently utilized in computer music

programming and then proposed an experimental classifi-

cation of these programming patterns. The classification

is based on two factors: (1) how the scheduling is per-

formed (implicit-scheduling/explicit-scheduling) and (2)

what controls the repetition (the user function itself/the

external loop structure or the scheduler). Based on the

discussion, we proposed names for these programming

patterns. The discussion also led to a suggestion that one

of the programing patterns (often seen in Impromptu)

should be referred as ‘self-rescheduling’, instead of ‘tem-

poral recursion’ as Sorensen describes in [13], and that

the name ‘temporal recursion’ would be suitable for an-

other programming pattern.

However, the aim of this paper is not to argue that these

names are canonical. It is rather intended to invoke some

attention to the necessity for the discussion of computer

music-specific programming patterns, as seen on more

general programming patterns among the programmer

community; the name for the programming patterns

should be given after collaborative and creative discus-

sion in the community.

6. FUTURE WORK

While each programming pattern described in this paper

performs a very simple and similar task, it can be ex-

pected that we would find more programming patterns if

we closely observe actual computer music programming

activity. For instance, live-coding performers may pro-

vide a number of interesting examples that perform more

complex musical tasks. It would be beneficial also to dis-

cuss their programming patterns, especially because un-

like in normal programming activities, live coding per-

formers must write and modify their programs on-the-fly,

on stage; they might take special care in the coding strat-

egy so that they can perform desired tasks in a manner

that is more suitable to such an abnormal programming

situation.

7. REFERENCES

[1] A.W. Appel and T. Jim, “Continuation-passing,

closure-passing style,” In Proc. the 16
th

 ACM

SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL, 1989.

[2] J. McCartney et al. “SystemClock” SuperCollider

3.2 help files.

http://doc.sccode.org/Classes/SystemClock.html

[Accessed on Apr/15/2014]

[3] D. J. Collinge, MOXIE: a language for computer

music performance. In Proc. of ICMC, 1984

[4] N. Collins et al., “Live coding in laptop

performance”, Organised Sound, Vol.8 (3),

Cambridge University Press, 2003.

[5] R. B. Dannenberg, The CMU MIDI toolkit, version

3, 1993

[6] L. Graham, D. E. Knuth and O. Patashnik, Concrete

Mathematics, Addison-Wesley, 1989

[7] J. M. Hoc et al., Psychology of Programming.

Academic Press, 1990.

[8] R. Ierusalimschy. Programming in Lua. The Third

Edition, Lua.org, 2013

[9] H. Nishino et al., “LC: A New Computer Music

Programming Language with Three Core Features”,

submitted to Proc. ICMC-SMC, 2014

[10] D. Riehle and Heinz Züllighoven. "Understanding

and using patterns in software development."

TAPOS 2.1, 1996, pp.3-13.

[11] C. K. Roy et al., “Comparison and evaluation of

code clone detection techniques and tools: A

qualitative approach,” Sciences of Computer

Programming, Vol. 74 (7), 2009. Pp.470-495

[12] A. Sorensen, The Many Faces of Temporal

Recursion, http://extempore.moso.com.au/temporal_

recursion.html, 2013 [Accessed on Apr/15/2014]

[13] A. Sorensen et al., “Programming with time: Cyber-

physical programming with Impromptu”, in Proc.

ACM SPLASH/OOPLSA, 2010

[14] G. Wakefield et al., “LuaAV: Extensibility and

heterogeneity for audiovisual computing”, in Proc.

the Linux Audio Conference, 2010.

[15] G. Wang, The chuck audio programming language.

A strongly-timed and on-the-fly environ/mentality.

Ph.D thesis, Princeton University, 2008.

[16] S. Wilson et al, The SuperCollider Book. The MIT

Press, 2011.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1159 -

