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ABSTRACT

With an optimal network topology and tuning of hyperpa-

rameters, artificial neural networks (ANNs) may be trained

to learn a mapping from low level audio features to one

or more higher-level representations. Such artificial neu-

ral networks are commonly used in classification and re-

gression settings to perform arbitrary tasks. In this work

we suggest repurposing autoencoding neural networks as

musical audio synthesizers. We offer an interactive musi-

cal audio synthesis system that uses feedforward artificial

neural networks for musical audio synthesis, rather than

discriminative or regression tasks. In our system an ANN

is trained on frames of low-level features. A high level

representation of the musical audio is learned though an

autoencoding neural net. Our real-time synthesis system

allows one to interact directly with the parameters of the

model and generate musical audio in real time. This work

therefore proposes the exploitation of neural networks for

creative musical applications.

1. INTRODUCTION

Training advancements in backpropagation, nonlinear ac-

tivation functions, and regularization have allowed the for-

mulation of expressive artificial neural networks (ANNs)

via deep architectures. Such networks are being applied

to multitudinous domains. In music, there have been ad-

vances in instrument classification [1], genre classification

[2–4], artist identification [2, 4], and key detection [4]. In

each of these works a new representation of low level au-

dio features is implicitly learned from the training data;

in other works feature-learning for musical audio is ex-

plicit, e.g. [5–9]. Multimodal objectives are explored as

well. Features are learned from data of multiple domains

in [10]; a cross modal mapping between representations is

subsequently learned.

An autoencoder is a feedforward ANN that is trained to

approximately reconstruct its input. A simple autoencoder

has one hidden layer of nodes connected to a visible input

layer and to a visible output layer. Hence the output of

the hidden layer is a transformation or encoding of the net-

work’s input. With suitable regularization the model may
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be trained so that the hidden layer produces a higher level

representation of the input that “explains” dependencies of

the input. Autoencoders are often stacked so that each hid-

den layer provides a successively more abstract represen-

tation of the input data space. A deep model consisting of

several hidden layers is often further optimized for a re-

gression or classification task.

Despite their increased popularity, neural networks have

not been fully exploited to synthesize musical audio. If a

model has been trained using stacked autoencoders trained

on musical input, then the learned parameters may yield in-

creasingly abstract representations of a musical data space.

By direct manipulation of the parameters, we may use the

model as an interactive musical audio processor and syn-

thesizer.

In this work we suggest that the features learned by such

networks may be directly modified to generate new musi-

cal audio. The time complexity for a feedforward (synthe-

sis) operation is at most quadratic in the number of nodes

of the largest layer. ANNs may therefore be used effi-

ciently in musical synthesis tasks. ANNs are data-driven

models; they learn characteristics of the space of the train-

ing data. They may be trained in an online fashion and fur-

ther adapted using new data as it becomes available. With

the use of nonlinear activation functions, ANNs may be

highly expressive and capture characteristics of the data

that linear models cannot. For these reasons, we believe

that ANNs warrant investigation for musical synthesis.

As with any machine learning paradigm, there are also

tradeoffs. The ANN is a highly general model and it may

be designed in a number of ways. Some critical decisions

that must be made include width of layers, depth of model,

optimization objective, training algorithm, learning rates,

types of nonlinearities, and types of regularizations. Thus

the search space for discovering the best model for musical

sound synthesis is large.

This paper evaluates a few simple models with the aim

of musical sound synthesis. Some of our design choices

are arbitrary, but they are rationalized in the appropriate

sections. We also provide a real time system for musical

sound synthesis based on shallow and deep autoencoders.

Our models are trained using the Pylearn2 machine learn-

ing library [11] which wraps around Theano [12] for fast

evaluation of mathematical expressions.

In the following section, we give some background on au-

toencoders. Section 3 describes how we have trained sev-

eral shallow and deep autoencoders. It also addresses some

of the challenges associated with learning meaningful mid-
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level representation of the input features. We then describe

our musical interface for “playing” an autoencoding neural

net. Future directions are discussed in Section 5. All code

is written in Python and provided at https://github.

com/woodshop/deepAutoController. We hope

that this paper encourages others to examine how this highly

adaptable class of models may be used for creative musical

tasks.

2. AUTOENCODERS

A classical autoencoder (also known as an autoassociator)

is a deterministic feedforward ANN comprised of an input

layer, a hidden layer, and an output layer (see Figure 1).

Each layer of an autoencoder consists of one or more units.

The input and output layers of an autoencoder have the

same number of units. The autoencoder learns a mapping,

or encoding, from an input vector x ∈ R
d to a hidden

representation y ∈ R
e. It also learns a mapping (decod-

ing) from y to the output layer z ∈ R
d. The inputs to the

units in the hidden and output layers are weighted sums of

the activations of the layers immediately preceding before

them, i.e.

y = s(Wx+ bhid) (1)

and

z = s(Wprimey + bvis) , (2)

where s(·) indicates an activation function (often nonlin-

ear, such as a logistic function) and W, Wprime, bhid, and

bvis are the parameters that the model will learn. Activa-

tion function(s) for neural networks are a key component

of design and continue to be a topic of active research.

When training an autoencoder we choose an objective

function that minimizes the distance between the values at

the input layer and the values at the output layer according

to some metric. Popular metrics include squared error:

d∑

k=1

(xk − yk)
2 (3)

or if x, z ∈ {0, 1}d, cross entropy:

−
d∑

k=1

[xk log yk + (1− xk) log(1− yk)] . (4)

The architectures of autoencoders vary. The number of

units in the hidden layer may be less than that of the in-

put and output layers. In such cases the activations of the

hidden layer are a compressed encoding of the input signal.

Alternatively we may choose to give the hidden layer more

units than the inner and outer layers. In such cases we will

usually enforce sparsity or another regularization on the

model so that the overcomplete set of weights may learn

a meaningful representation of the data. One method of

regularization is denoising [13], in which the model learns

to reproduce the input from a corrupted version of the in-

put. There are several types of corrupters used in practice,

e.g. gaussian distributed noise, dropout, and salt and pep-

per corruption.
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Figure 1. An autoencoder having 5-4-5 input, hidden,

and output units, respectively. The autoencoder’s objec-

tive function minimizes the difference between x and z, as

measured by some distance function.

After training a shallow (single hidden layer) autoencoder,

we may use the activations of its hidden layer as the input

to a second autoencoder. In this way we may stack autoen-

coders. For each successive model, we may learn a more

abstract mapping from the layer beneath it. The layer-wise

pretraining of autoencoders and subsequent stacking and

finetuning is a typical strategy for building deep neural net-

works.

Once a shallow or deep autoencoder has been success-

fully trained on musical audio, we may synthesize new

musical audio by running feedforward passes through the

model at an appropriate audio rate. By exposing the acti-

vations of the hidden units to a human operator, we may

exercise control over the sound of the output of the model.

In one case, we may stream audio through the model and

modify the activations at one or more hidden layers. Alter-

natively, we may remove the encoding part of an autoen-

coder and replace a subset of the hidden units with our own

streaming values, propagating them through the decoding

half of the model.

3. MODELS

As a proof of concept for an autoencoder synthesizer, we

trained several models and built an interface for manipu-

lating the models. We chose simple model topologies and

performed some minor grid searching across model size

and quantity of corruption (for regularization). Our pri-

mary goal was to train several models having low recon-

struction error that could be tested as music audio synthe-

sizers using an interactive interface. We discuss the models

in this section and discuss the interface in the next section.

We experimented with three model variants:

• Pretraining of a shallow autoencoder

• Deep pretraining of a second autoencoder

• Fine tuning of a deep composed autoencoder
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Noise

HL1 0.00 0.01 0.02 0.05 0.10 0.25 0.50

8 0.0440

16 0.0414

64 0.0276

256 0.0187

512 0.0198 0.0664 0.0854 0.0921

1024 0.0352 0.0711 0.0927 0.0980

1500 0.0371 0.0360 0.0405 0.0547

2048 0.0983 0.1798 0.2114 0.0972

2500 0.0951 0.0951 0.0951 0.0951

3500 0.0951 0.0951 0.0951 0.0951

Table 1. Mean squared validation error on for pretraining of shallow autoencoders. The input/output layers of each model

had 1025 units. HL1 designates the number of hidden units. Noise designates the standard deviation of gaussian distributed

noise used to corrupt the input signal.

The first model we train is a simple autoencoder like the

one depicted in Figure 1. In the second variant we take

the output of the hidden layer of an already-trained au-

toencoder and train a second autoencoder to reproduce the

mapped input. Hence if the size of the hidden layer of the

first encoder is N , then this is also the size of the input

and output layers of the second autoencoder. There is no

limit to how many stacked autoencoders we may train in

this fashion. For our purposes, we have limited ourselves

to stacked autoencoders of depth 2. In the final variant we

build a deep composed autoencoder by taking the hidden

layers of two pretrained autoencoders and finetuning the

weights of the whole system to improve reconstruction of

the original input.

We note that this is often the order of events for training a

deep neural network. Each layer is pretrained in succession

as a shallow model with the previous layer providing the

input to the subsequent layer. When pretraining is finished

the system is “finetuned”.

3.1 Data

We used 70,000 frames of magnitude Fourier transforms

randomly selected from a dataset of approximately eight

thousand songs existing across unique artists. The dataset

is roughly stratified across 10 musical genres. Of these

audio frames 10,000 were held out as a validation set and

10,000 were held out as a test set. Each audio frame was

computed from a 2,048-point FFT on audio having a sam-

pling rate of 22,050 samples per second. The entire data

set was normalized to the range [0, 1]. The magnitudes of

the first 1,025 frequency bins were given to the models as

the input vector of a shallow autoencoder.

We chose to use frames of magnitude FFTs for our mod-

els because they may be reconstructed exactly into the orig-

inal time domain signal when the phase information is pre-

served, the Fourier coefficients are not altered, and appro-

priate windowing and overlap-add is applied. It was thus

easier to subjectively evaluate the quality of reconstruc-

tions that had been processed by the autoencoding models.

There are several disadvantages to using FFTs as the low

level training data; these are discussed later.

Figure 2. Top: STFT of original audio file. Bottom: STFT

of reconstructed audio file.

3.2 Training

Training was performed using stochastic gradient descent

on mini-batches of 100 frames. The learning rate was set

at 0.005 and a learning momentum 0f 0.5 was used. In

all training, the mean squared error was used as the cost

function. On pretraining of shallow networks, a sigmoid

activation function was used only on the hidden layer, with

linear activation on the output layer. When a second au-

toencoder was employed for a deep model, the sigmoid

activation function was used on both the hidden and output

layers of the second autoencoder. On some models we ad-

ditionally used gaussian noise as a network corruptor for

regularization. The encoding and decoding weights were

untied in our models.
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Noise

HL1 HL2 0.00 0.10 0.25

256 8 0.0737 0.0737 0.0737

256 16 0.0737 0.0737 0.0737

256 32 0.0737 0.0737 0.0737

1500 8 0.0331 0.0331 0.0329

1500 16 0.0348 0.0346 0.0344

1500 32 0.0356 0.0369 0.0384

Table 2. Adjusted mean squared validation error for

second-layer pretraining of deep autoencoders. The in-

put/output layers of each model is designated by HL1. The

models printed in boldface in Table 1 were used to pro-

vide the inputs to the models in this table. HL2 designates

the number of hidden units. Noise designates the standard

deviation of gaussian distributed noise used to corrupt the

input signal. The mean squared error has been adjusted for

easier comparison with other tables. For each model, the

mean squared error was scaled by 1025

HB1
.

3.3 Training Results

Table 1 shows the mean squared error on the validation set

for each model that was trained. Smaller networks that em-

ployed no denoising perform the best. The optimal num-

ber of hidden units given the chosen hyperparameters and

model topologies appears to be 256, a feature size reduc-

tion of approximately 25%. Increasing the hidden layers

to yield overcomplete filters does not appear to improve

the models’ performance. This is expected behavior for

overcomplete models lacking regularization. Adding some

corruption to the model with 1500 hidden units appears

to improve results slightly. The largest models each show

the same reconstruction error. This result may mean that

one or more of the values of the hyperparameters (such as

learning rate, momentum, initial weights) were inappropri-

ate.

Figure 2 shows the original spectrogram and a recon-

structed spectrogram using a 256-8-256 unit autoencoder

trained without denoising. We observe that much of the

fine-grained detail is lost by the autoencoder, especially

above the lowest frequency bins. The figure does not depict

desirable behavior for an optimal autoencoder but nonethe-

less some of the detail in the lower frequency bins is ap-

proximately reconstructed.

Table 2 shows the adjusted validation performance of a

second autoencoder trained using the activations of the hid-

den units of a first autoencoder as input. The mean squared

error of each model has been scaled by 1025

HB1
so that it

may be directly compared with results shown in other ta-

bles. Once again smaller networks perform better than

large ones and denoising does not appear to help much.

Interestingly we find that the deep 1500-8 model has a bet-

ter per-visible-unit performance than the 8 unit shallow au-

toencoder.

Table 3 shows the final validation and test error for two

models. The test error is significantly worse than the vali-

dation error—a sign of possible overfitting. The final fine-

tuned models perform worse than the deep architectures

HL1 HL2 Validation Test

256 8 0.0723 0.1006

1500 8 0.0953 0.1333

Table 3. Mean squared error on validation and test set for

deep composed autoencoders. The models printed in bold

in Tables 1 and 2 were connected and finetuned.

presented in Table 2, suggesting that the learning rate may

have been inappropriate. Overall more complex models

perform worse than the simpler topologies.

3.4 Discussion

We conducted informal listening tests in conjunction with

the synthesis interface described in the next section. The

reconstructions sounded similar to the originals, but with

a “grainy” noise mixed in. The detail in the high end was

missing but much of the harmonic material was preserved.

The optimal parameters of the models were mostly in-

hibitory. Therefore the deactivation of a unit in a hid-

den layer yields a denser mixture of sounds at the output.

Learning to play such an interface may prove difficult for

new users, as one typically expects the opposite behavior

from a musical synthesizer.

Neural networks have lots of hyperparameters over which

to search, including learning rate, regularization, layer width,

and model depth. The training results presented indicate

that the hyperparameters chosen for the models were prob-

ably inadequate. Further work is needed to examine how

these models might be improved.

It is notable that the low level input features, which were

magnitude FFT coefficients, exhibit decreased average am-

plitude as the frequency bin increases (cf. Figure 2. If

many of the input features are close to zero, then train-

ing may require more epochs and a steeper learning rate

to adjust. We choose to work with FFT feature frames

because the reconstruction will be cleaner than if we use

band-limited features, given an optimal autoencoder.

Future experiments will consider alternative low-level rep-

resentations with which to train the models. It might be

more appropriate for musical sound synthesis if the mod-

els are trained using log frequency features rather than lin-

ear frequency. Log frequency representations more closely

match our auditory systems.

The input data was globally normalized to the range [0, 1].
As noted above the distribution of the data was highly sparse.

The sparsity of the input data may have affected the ability

of the models to optimize their parameters. In future mod-

els we will standardize the features to unit variance. Future

models will also explore log amplitude representations.

The shallow autoencoders in this paper use a sigmoid

encoder and linear decoder with untied weights. It has

been shown that these model topologies learn a transfor-

mation that spans the same subspace as Principal Compo-

nents Analysis [14, 15]. Future models will explore alter-

nate models having tied weights.

We have noted that the inhibitory nature of the weights

makes it difficult for a musician to learn how to play the

synthesizer. We explored models having nonnegative weights
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by using an asymmetrical weight decay as shown in [16].

The results are not presented here as they are preliminary.

Reconstruction error in such models is worse than without

nonnegativity constraints. But we find informally that the

models are somewhat more intuitive to play as synthesiz-

ers.

We also continue to explore other types of activation func-

tions. In particular, rectified linear units have been shown

to work well in the audio domain [17]. We have inves-

tigated shallow and deep autoencoders with rectified lin-

ear units with and without nonnegativity constraints. We

have found that one of our shallow models with 16 hid-

den inits, unconstrained weights, rectified linear encoding

units, linear decoding units, and tied wights achieves rel-

atively good performance, having a 0.0310 mean squared

validation error. The filters for this particular model sound

more “musical” to us and the model is more intuitive to

play as a musical sound synthesizer. However all cur-

rent results on new developments are subjective and per-

formance results are too preliminary to include in this pa-

per.

4. INTERFACE

We programmed a real-time interface for interaction with

the hidden units of deep or shallow autoencoders. Whichever

type of model is given to the program, the innermost hid-

den layer is exposed to the user for interaction. The inter-

face is designed to work with models that have been trained

using the Pylearn2 library, but generalizing the program

to accept lists of parameters rather than class instances

of models is trivial. The code is available at https://

github.com/woodshop/deepAutoController; it

will be actively improved/updated. The current version is

written in Python, but another version which is written in

Objective-C++ may be deployed soon.

The current code consists of two classes, one for the in-

terface, and one for the audio streaming and processing.

The program is executed with three mandatory input argu-

ments: the path to a pickled Pylearn2 model; a file indicat-

ing the parameters for low-level feature extraction; and a

file designating what preprocessing to apply to the features.

At the initialization of the application a Python Queue is

instantiated for message-passing between the Autocontrol

class and the PlayStreaming class. The two classes are

briefly described below.

4.1 Autocontrol Class

The interface is designed to work with the Korg nanoKon-

trol2, a MIDI controller having 8 fader channel controls

and a transport. Although the code has been written for

this controller, it is easy to rewrite the mappings for an-

other MIDI controller. The Autocontrol class instantiates a

MIDI connection and uses the Pygame package to poll for

MIDI events and produce informational output in a sepa-

rate window (Figure 3). The interface receives and several

defined MIDI events form the nanoKontrol2:

• Track: Cyclically moves the view of hidden layer

units backward or forward by 8 units.

Figure 3. A snapshot of the information window show-

ing which hidden units are in view and what their scaling

settings are.

• Cycle: Shuts down the application

• Set: Sets the output of all units to 0.

• Rewind and Fast Forward: Switches between origi-

nal and synthesized audio

• Stop: Stops the audio and rewinds

• Play: Plays/pauses the audio output

• Record: Resets all hidden units to original activation

values

• Pan pot and fader: Control a scaling factor which

is multiplied against a particular unit’s activity, thus

suppressing or augmenting the activity at that unit.

4.2 PlayStreaming Class

This class is instantiated as a separate process. It loads

the parameters of the Pylearn2 model an an optional audio

file. It polls for messages from a queue instance. When

a user interacts with the midi controller this class instance

receives a message from the Autocontrol class instance.

Audio frames are read directly from an open audio file

or the computer’s default input and transformed to feature

frames. If the user has designated that the original audio

stream should be monitored, the audio frame is immedi-

ately transformed back to the time domain and sent to the

output. Otherwise it is encoded (Eq. 1). The activation of

the hidden units are scaled or muted by the user’s settings.

The output is decoded (Eq. 2 back to an low level feature

frame, converted to the time domain, and sent to the output.

If an audio file is not provided, sound from the computer’s

default input device is used. The interface can also operate

in a no input mode. In this case, the class “fires” the hid-

den layer at an audio rate while the user maintains control

over the scale of the hidden layer units. A channel vocoder

provides phase continuity for the inverse FFT if the user
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decides to ignore the phase information from the input sig-

nal.

5. FUTURE WORK AN CONCLUSIONS

This paper presents a first step toward extending the typical

use patterns of neural networks beyond classification and

regression to audio synthesis. Training an autoencoder so

that it captures a meaningful mid-level or higher-level rep-

resentation of the input is difficult. As has been shown in

Section 3 it may be difficult to optimize a model. Simply

adding extra layers to create a deep model does not auto-

matically yield a richer instance. There are lots of model

hyperparameters to finetune in ANNs, including learning

rate, weight decay, momentum, and other forms of reg-

ularization. In the future additional effort will be placed

toward building more robust models.

One drawback of using neural networks for musical au-

dio synthesis is that the learned weights may be negative.

Since weights may be subtractive as well as additive, it

is difficult to understand how they contribute to the model.

Future work will include investigating models that are trained

using nonnegative weight regularization, as well additional

sparsity constraints and activation functions. It is the au-

thors’ belief that neural networks having overcomplete, sparse

nonnegative weights will be easier to musically control.

The currently investigated models do not consider tem-

poral dependency. In the future we would like to apply

musical synthesis using temporally inclusive architectures

such as recurrent neural networks.

There are many other extensions to consider. For instance

we envision pretraining a deep autoencoder for optimal re-

construction, followed by supervised finetuning using in-

strument classes. If the model learns to respond well to

specific instruments (or other acoustic events), we may use

autoencoder synthesizers to remix music.
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