
Tangibility and Low-Level Live Coding

Georgios Diapoulis

No affiliation

ydiapoulis@gmail.com

Ioannis Zannos

Ionian University

Department of Audiovisual Arts

zannos@gmail.com

ABSTRACT

Current advances in digital fabrication are accompanied by

efforts to bring about increased facility in the fabrication

of digital circuits. In this context, tangibility can apply to

the intimate contact with objects as programmable entities

forming part of the human-material loop in the sense of

physical computing. In this paper, we explore the possi-

bilities of making music with very simple circuits, using

an equally minimal interface for live interaction with the

hardware.

Our aim is to find new ways for experiencing the behav-

ior of circuits and for navigating inside the data space of

generative algorithms with musical devices by using mini-

mal interfaces, while involving both human and machine in

the perception of the musical output. In our experiment we

have focused on the lowest level of the machine language

[1], that of manipulating bits in real-time. Furthermore, we

attempt to tighten the loop between human and machine

by introducing a machine listening component which pro-

cesses the output of the human-machine interaction. This

splits the perceptual feedback loop into a human and a ma-

chine part, and makes the final output a joint outcome of

both.

1. INTRODUCTION

1.1 LHC and Tangibility in live music-making

Live coding as a practice blurs the limits between compo-

sition and performance [2]. It is also considered as a new

notation form [3] or an approach for developing notations,

albeit in its infancy. Live coding from scratch usually fol-

lows a bottom-up approach, building musical elements in-

crementally from simple to more complex ones. Yet from

the point of view of the computer, the musician uses high-

level abstractions for coding (for example: SinOsc, Synth,

Pattern, Routine, Scale). In this paper we present an ap-

proach that attempts to start from low-level computational

elements, namely bits and their manipulation through sim-

ple automata that make up the building blocks of digital

machines. Writing code at the lowest level of machine

language seems hardly a practical method for construct-

ing music, and no more a usual method for constructing

Copyright: c⃝2014 Georgios Diapoulis et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

programs. Our experiment is motivated by the question,

whether it is possible to create an intimate link between

musician/coder and machine which, while still based on

digital programming principles, addresses both the human

and the machine in an integrative manner. By that we mean

integrating different functions or faculties such as sensa-

tion (input), perception (human/machine listening), plan-

ning (computation), action and comprehension as closely

connected as possible, in order to form a closely knit whole.

This is a prerequisite for forming the closest possible inter-

active link between human and machine, one that creates a

“tangible” contact between the two.

In this experiment we are not applying any design metaphors

from computer music, but look for grammatical interfaces

that open the way to hacking, as suggested by Stowell and

McLean (2013) [4]. Our starting point is not music, but

computational processes. Our question is how the per-

former can use computational processes as raw material to

form into something approaching a musical performance.

Therefore, we developed devices and interfaces that serve

to communicate to computer musicians some fundamen-

tal notions and processes of computing machinery, such

as bits, symbols, binary representation of numbers, serial

transimission, decoding and encoding process, and lexical

analysis. We do not ask of the performer any previous ex-

perience in programming. Such an apparatus might have

educational uses [5].

In our design, we sought to obey the general rule of pre-

senting the user with 7 ± 2 elements at any moment (usu-

ally refered as Millers law). We use three input switches,

one reset button, a potensiometer and two LED displays

which reflect the current state of the machine. Equipped

with this interface, we sought to develop a bottom-up mini-

mal programming language and environment for live music-

making.

We presented first results of this low-level approach to

live coding in Diapoulis and Zannos (2012). The language

we used likely is being generated by type-0 grammars [6]

in the Chomsky hierarchy. Whether or not this language

can be followed by humans remains an open question; we

would like to thank Nick Collins who set this question dur-

ing live.code.fest in Karlsruhe, 2012. The basic design that

serves as starting point is a 3-bit minimal interface that

drives a counter coupled to a decoder as generator of mu-

sical structures. As a next step, our aim is to develop inter-

faces that enable us to explore and experience the behav-

ior of these processes as musical processes at the building

block level [7], that is, as musical phrases or sections com-

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 440 -

mailto:ydiapoulis@gmail.com
mailto:zannos@gmail.com
http://creativecommons.org/licenses/by/3.0/

Figure 1. Schematic setup of our expreriment and its main components.

prised of groups of single note events. Here we present first

results of this approach, which add higher-level processing

of the initial output by the machine. This can in turn be

used as musical material, thereby enriching the final out-

come. Figure 1 presents schematically the overall setup of

our experiment and its main components.

Futhermore, we have developed a new hardware interface

which allows more intimate and direct tactile interaction

with the digital circuit through flexible buttons that require

very small and light movement, and can be operated while

remaining almost entirely in contact with the device.

2. EXPERIMENTAL SETUP

Our experiment is based on the combination two elemen-

tary blocks of digital design: A counter and a decoder.

Both are sequential circuits which can be represented by

a finite state machine [8]. The counter is a 3-bit counter

machine which operates as the modulo 8 function using

2’s complement. The decoding machine is a Huffman de-

coder which operates with variable length code and uses

a combinational encoding process to procudes symbol se-

quences from an alphabet of four symbols with specific

weights. The human agent provides a 3-bit parallel input to

the counter by means of three switches and a potentiome-

ter. We have developed two different machines, one with

a fixed clock and one with a variable clock rate. The po-

tentiometer controls the counter’s positive edge clock. It

it is an external module which applies only to the machine

with the variable clock rate. The output from the counter

machine is read in serial order by the decoding machine.

The decoder has a single bit input, and an output alphabet

of four symbols (A, B, C, D).

In the original experiment, both machines were devel-

oped using prototype circuit boards and TTL technology.

The output from the counter and the decoder are sent to

an arduino board, which is connected to SuperCollider via

USB cable. We use SimpleMessageSystem arduino’s li-

brary which is controlled from ArduinoSMS class in Su-

perCollider. SuperCollider is responsible for real-time sound

synthesis. We have mapped counter’s output, numbers 1

to 7 to the seven diatonic degrees and 0 (zero) to silence

(pause). The four symbols produced from the decoder pro-

vides us the opportunity for senondary mapping. The soft-

ware used for this experiment was packaged as a Quark for

SuperCollider [9], named LHC 1 2 , see Figure 2.

Figure 2. GUI interface implemented as a Quark for Su-

perCollider

Following diagram gives an overview of the experiment

(Figure 3).

Figure 3. A high-level diagram of the system

1 https://github.com/iani/SC/tree/master/
Quarks/iz.projects/LHC

2 https://gist.github.com/yorgosdiapoulis/
11365609

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 441 -

https://github.com/iani/SC/tree/master/Quarks/iz.projects/LHC
https://github.com/iani/SC/tree/master/Quarks/iz.projects/LHC
https://gist.github.com/yorgosdiapoulis/11365609
https://gist.github.com/yorgosdiapoulis/11365609

3. PROCESSING AND OUTPUT

The input is provided by the human agent in terms of a

3-bit parallel input. This drives a counter machine which

implement the modulo 8 addition function in 2’s comple-

ment. The counter transmits in serial order the 3-bit output

to Huffman decoder machine. The final output is a stream

of symbols whose alphabet consists of the four symbols

(A, B, C, D). Overall, the output produced by our initial

device (2012) had three levels:

1. The output of a variable-rate counter programmed

by the 3-bit switch interface and the potensiometer.

2. The output of sampling the states of the counter at

a steady-rate, programmed only by the 3-bit switch

interface.

3. The decoding of the sampled states by a Huffmann

decoder into a stream whose alphabet consisted of

the 4 symbols A, B, C and D.

4. OBSERVATION OF OUTPUT: EXPLORING

PALINDROMES

From the three levels of output described above, output

level 1 presents some interesting characteristics. The variable-

rate clock of the counter is adjusted by a knob, while the

rate at which the state of the (variable-rate) clock is sam-

pled by the software system that receives its output is steady.

This creates a downsampling-artefact which results in quasi-

palindromic structures shown in Figure 4. We created a

class LHCV 3 in order to simulate this process and explore

it in greater detail.

Figure 4. Original values of variable-rate clock in green,

latched values by steady-rate clock in red

Through this simulation, we can confirm in software the

emergence of quasi-palindromic structures which was ob-

served in hardware. In this paper we give the formal frame-

work for describing these phenomena.

Such an approach has applications in education but also

in design at all levels. It also opens new ways to approach

3 https://github.com/aucotsi/sc3/blob/master/
LHC/LHCV.sc

live coding [10]. The value of low-level approach has al-

ready been noted [11]. Here we try to take this approach

to the limit.

At the core of the LHCV-sampling simulator is the fol-

lowing algorithm - as coded in SuperCollider:

{ Latch.ar(Stepper.ar(Impulse.ar(Line.kr

(1,99,9))), Impulse.ar(8)) }.plot(9)

The above code produces quasi-palindromic structures as

demonstrated in the following plot (Figure 5). The X-axis

represents the number of samples and Y-axis represents the

diatonic degrees from 1 to 7, and 0 (zero) is for pause.

Figure 5. Quasi-palindromic structures. Y-axis: diatonic

degrees. X-axis: number of samples

The palindromes were a natural first outcome of the mech-

anism, and illustrated a way in which such an elemen-

tary process can be induced to produce structures that are

recogniseable at a higher level - a kind of “emergence”.

The next question in this respect is to determine the ra-

tios of counter rate and sampling rate at which such palin-

dromes occur. The first argument of the Latch UGen is the

input, while the second is the trigger for latching the value.

The Stepper operates as the modulo 8 function and its first

argument is the trigger. This observation demonstrates that

by applying a linear function into the frequency argument

of the trigger (Stepper) is an approach for generate quasi-

palindromic structures. A characteristic audible example

is the following code excerpt in the form of a SuperCol-

lider “tweet” (see https://ccrma.stanford.edu/

wiki/SuperCollider_Tweets):

play{p=Impulse;SendTrig.ar(Changed.ar(a=

Latch.ar(Stepper.ar(p.ar(Line.kr

(99,1,40,1,0,2))),p.ar(8))),0,a)};

OSCFunc({|m|(degree:m[3]).play},’/tr’)

Code excerpt below builds a GUI for trying out various

parameter configurations of the counter-sampling algorithm

interactively 4 .

SynthDef(\lhcv, {|clk=1 xclk=1.1 input=1|

var p = LFPulse;

var signal = Latch.ar(Stepper.ar(p.ar(

xclk), step: input), p.ar(clk));

Out.ar(0, SinOsc.ar(100*signal))

}).synthGui(

4 The code makes use of the Lilt2 Library by Iannis Zannos, https:
//github.com/iani/Lilt2

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 442 -

https://github.com/aucotsi/sc3/blob/master/LHC/LHCV.sc
https://github.com/aucotsi/sc3/blob/master/LHC/LHCV.sc
https://ccrma.stanford.edu/wiki/SuperCollider_Tweets
https://ccrma.stanford.edu/wiki/SuperCollider_Tweets
https://github.com/iani/Lilt2
https://github.com/iani/Lilt2

specs: [

clk: [0.1, 2.0],

xclk: [1.0, 20.0],

input: ControlSpec(0, 7, \lin, 1)

]);

5. IN SEARCH FOR FURTHER PATTERNS: A

MINI-LANGUAGE FOR LHC (MLHC)

The observations about the emergence of patterns made

at the first stage of the experiment above led to the ques-

tion whether the machine could also detect patterns in the

signal, using algorithmic ways of processing the output.

Since the patterns of output level 1 were recognizeable by

humans our “bet” was what kind of patterns the machine

could recognize from the symbol stream that is the output

of level 3. To analyse the string of symbols we employed

the techniques of regular expressions, which are one of the

first tools of choice for such tasks. These expressions de-

fine regular languages, that is formal languages that are

equivalent to non-deterministic finite automata (NFA) [12].

We thus defined a mini-regular-language for musical live

coding.

“mLHC” is a regular language in Chomsky hierarchy.

The alphabet of that language consists of the output sym-

bols from the decoder/encoder. Each word is being recog-

nised at run-time through lexical analysis with POSIX ex-

pressions.

5.1 Alphabet

The alphabet consists of three letters (symbols). Symbol A

is mapped to the empty string ε (A → ε). In such a way we

can reduce the complexity of the tokens. So the alphabet is

Σ = {B,C,D}.

5.2 Language

We define the language L as a set which contains every

product of the alphabet Σ∗ and ends with the letter D, as

follows:

L = {wϵΣ∗
: w every word that ends with a D}

5.3 Regular expressions

Using the following POSIX expression we can recognize

every token that ends with a “D”, which is used as an end-

marker. The set of the accepted words have an infinite car-

dinality, though they can be expressed by a finite state ma-

chine.

// POSIX expression

D|B+D|C+D|(B+C+)+D|(C+B+)+D|(B+C+)+B+D|(C+B

+)+C+D

Where plus (+) symbol, stands for “at least one”.

5.4 Graph for lexical analysis

Figure 6 shows the non-deterministic automaton (NFA) which

describes visually the recognition process on the ongoing

output string from the encoder.

The start state is q0 and the final state is q3.

Figure 6. NFA for lexical analysis

6. DISCUSSION: PHYSIOLOGY, PERCEPTION,

INTERACTION

The crucial question underlying these experiments con-

cerns the relationship of unconscious and consious pro-

cesses in musical experience. Is it possible to conduct

music making through programming in a similar way as

traditional live music making activities, that is, to involve

the intuitive (unconscious) and physical levels of the cre-

ative process together with the highly analytical processes

of programming? Already our interface has been pushing

in this direction, since it is possible to run the clock rate at

the limits of the perception of individual notes.

6.1 Fast vs. Slow

It is inevitable that next generations will be faster in their

interaction with machines. We could imagine future sys-

tems of HCI that will improve our capabilities into this 5 .

Speed matters in evolution but this is not the case in art

practices. Slow code 6 represent a completely different

perspective into this. But we are making music. Music

is a complex phenomenon and a really demanding task.

“Should music interaction be easy?” [13].

7. CONCLUSION

In this paper we presented experiments in combining soft-

ware and hardware coding, aided by visual representations

of the behavior of the coupled hardware-software processes.

The observations made through the present experiments re-

late to several questions regarding the character of live cod-

ing as an individual experience and as a cultural activity.

For example, it has been asked whether live coding is just a

state of mind [14] or a self-referential cultural activity [15].

Live coders possibly open a new approach to use of tech-

nology in art through the policy of “show us your screens”,

that is, through the public display of programming activity

during performance. This approach does away with any

buffers or security cushions that protect from users’ “mis-

takes”. In live coding, concerns on safety are raised at a

different level than in other environments and creative set-

tings [16]. Perhaps in this sense live coding redefines the

5 Video by Click Nilson https://www.youtube.com/watch?
v=gi3jMQs0Gfs

6 http://www.ludions.com/slowcode/

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 443 -

https://www.youtube.com/watch?v=gi3jMQs0Gfs
https://www.youtube.com/watch?v=gi3jMQs0Gfs
http://www.ludions.com/slowcode/

original meaning of the word “program” as a public prac-

tice which is being announced simultaneously to the writ-

ing act itself. Magnusson (2014) has pointed out the re-

lationship of this practice to the etymology of “program”:

“as the Greek root, prográphein, signifies the activity of

public writing” . One may add that this sense of the “pro-

gramming” activity is still found in modern Greek in the

phrase “programmatic statements”, which means “policy

statements”, made publicly in political campaigns.

A further question concerns the role perceptual and cog-

nitive processing limits in live coding and human-machine

interaction. We used as a typical time frame 0.5 seconds

(tempo = 120bpm), and by accellerating beyond that, lim-

its of music perception [17] could be felt. Experimenting

using such an apparatus for live music-making relies on

subconscious processes. Whether or not this can be used

as an expressive way to live coding is a question still open

to further research. But we believe that by “designing con-

strains” [18] using grammatical interfaces for musical ex-

pression is a promising field for experimentations as it is

a new area of musical practices based on computation. In

our setup we could also observe the computational algo-

rithms juxtaposed to the simulation of signal processes that

belong to the domain of Calculus.

Into this scope “constraints are seen as compositional rules”

[18]. Whether or not this is for real-time or non real-time

usage is a matter of the composer/performer. Interesting

applications could be developed also on the microscopic

level. This may lead to states of training where program-

ming will become as effortless as swimming in a “pool of

code” . Perhaps this is at least one part of the essence of

live coding and interactive programming. The deduction of

the cognitive effort [19] plus a journey in minimal expres-

sions. A typical duration for a live coding performace is ten

to twenty minutes. Code expressions must be elegant and

short, in order to be coherent and easy to debug. Whether

or not it is feasible to write programs unconsciously is a

topic for research relevant to human-computer interaction

design, but also addresses broader philosophical concerns

regarding embodiment.

Acknowledgments

We would like to thank family and friends.

8. REFERENCES

[1] G. Diapoulis and I. Zannos, “A minimal interface for

live hardware coding,” in Live Interfaces, ICSRiM, U.

of Leeds, 2012.

[2] A. Blackwell and N. Collins, “The programming lan-

guage as a musical instrument,” in Proceedings of

PPIG05 (Psychology of Programming Interest Group),

2005.

[3] T. Magnusson, “Algorithms as scores: Coding live

music,” Leonardo Music Journal, vol. 21, pp. 19–23,

2011.

[4] D. Stowell and A. McLean, Live music-making: a rich

open task requires a rich open interface. Springer,

2013.

[5] N. Collins, “Trading faures: Virtual musicians and ma-

chine ethics,” Leonardo Music Journal, vol. 21, no. 3,

pp. 35–39, 2011.

[6] D. Grune and C. Jacobs, Parsing techniques: A practi-

cal guide. Springer, 2007.

[7] E. Miranda, Composing music with computers. Focal

Press, 2001.

[8] U. of Crete. (2011, September) Cs-120: Digital

design. [Online]. Available: http://www.csd.uoc.gr/
∼hy120/11f/engl cont.html

[9] D. Cottle, S. Wilson, and N. Collins, The SuperCol-

lider Book. MIT Press, 2012.

[10] N. Collins, A. McLean, J. Rohrhuber, and A. Ward,

“Live coding in laptop performance,” Organised

Sound, vol. 8, no. 3, pp. 321–330, 2003.

[11] T. Bovermann and D. Griffiths, “Computation as ma-

terial in live coding,” Computer music journal, vol. 38,

no. 1, pp. 40–53, 2014.

[12] M. Sipser, Introduction to the Theory of Computation.

Course Technology, 1996.

[13] J. McDermott, T. Gifford, A. Bouwer, and M. Wagy,

Should Music Interaction Be Easy? Springer, 2013.

[14] T. Magnusson, “Herding cats: Observing live coding

in the wild,” Computer Music Journal, vol. 38, no. 1,

pp. 8–16, 2014.

[15] N. Collins, “Live coding of consequence,” Leonardo,

vol. 44, no. 3, pp. 207–211, 2011.

[16] R. Wieser and J. Rohrhuber, “Personal accounts on the

history of live coding,” in Collaboration and learning

through live coding, Dagstuhl Seminar 13382, 2014.

[17] S. Koelsch and W. A. Siebel, “Towards a neural ba-

sis of music perception,” Trends in Cognitive Sciences,

vol. 9, no. 12, pp. 578–584, 2005.

[18] T. Magnusson, “Designing constraints: Composing

and performing with digital musical systems,” Com-

puter Music Journal, vol. 34, no. 4, pp. 62–73, 2010.

[19] A. McLean, “Stress and cognitive load,” in Collabora-

tion and learning through live coding, Dagstuhl Semi-

nar 13382, 2014.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 444 -

http://www.csd.uoc.gr/~hy120/11f/engl_cont.html
http://www.csd.uoc.gr/~hy120/11f/engl_cont.html

