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ABSTRACT

Octave dual-tone is one of the most difficult patterns to

identify in multipitch estimation (MPE), as the spectrum of

the upper note is almost masked by the lower one. This pa-

per investigates the potential for a supervised binary classi-

fication framework to address this issue, and whether such

a framework is adequate for diverse real-world signals. To

this end, a new dataset comprising of 3,493 real single

notes and octaves recorded by two pianists and guitarists

are constructed to facilitate an in-depth analysis of this

problem. The dataset is available to the research commu-

nity. Performance of synthetic and real-world octave dual-

tones using various spectral-, cepstral- and phase-based

features are studied systematically. Our experiments show

that the instantaneous frequency deviation (IFD) represents

the most reliable feature representation in discriminating

octave dual-tones from single notes. Based on this new

dataset and the RWC dataset, we present a series of experi-

ments to offer insights into the performance difference be-

tween synthetic and real octaves, piano and guitar notes, as

well as studio recordings and home recordings. As the pro-

posed method holds the promise of resolving octave dual-

tone, we envision that it can be an important module of a

multipitch estimation system.

1. INTRODUCTION

Consonant intervals are a very common part of music in

our everyday lives. With frequencies of simple integer ra-

tio, consonances have more coincident partials (overlap-

ping harmonics) than dissonances. From a signal process-

ing perspective, this makes it more difficult to specify all

the pitch occurrences from the spectrum [1]. Accordingly,

resolving overlapping harmonics poses a great challenge

in multipitch estimation (MPE) tasks for multi-source mu-

sic signals [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Among

the basic music intervals, the most challenging one might

be the octave dual-tone (perfect 8th intervals), as the fun-

damental frequency (f0) of the upper note is exactly twice

of the lower note. For instance, the spectrum of an octave

dual-tone A4+A5 would be much similar to that of a sin-

gle note A4, as Fig. 1 shows. While the lower note A4 can

usually be identified by MPE algorithms, identifying the
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Figure 1. Spectra of a lower single note (A4, f0=440

Hz), an upper single note (A5) and an octave dual-tone

(A4+A5). All three samples are played by the same mu-

sician and with the same piano. Upper: 0 to 4 kHz; lower:

4 to 8 kHz.

presence of the co-occurring A5 is challenging. We refer

to this confusion between a single note and its correspond-

ing octave dual-tone (usually with its upper octave) as the

octave detection error (instead of the confusion between a

single note and the other single note an octave higher or

lower to it).

To circumvent this issue, a number of solutions have been

proposed, encompassing those based on smoothness ap-

proximation [1, 3, 2], linear or non-linear interpolation from

non-overlapping harmonics [5, 7, 6], and probabilistic mod-

els for spectral envelope (SE) modeling [3, 4], amongst

others. Recently, matrix decomposition-based MPE algo-

rithms have also been proposed, such as non-negative ma-

trix factorization (NMF) or sparse coding (SC) [7, 3, 8, 9].

However, the performance of many prior arts is limited by

the linear superposition assumption of the magnitude spec-

tra and the requirement of obtaining non-overlapping har-

monics as a reference. Moreover, oftentimes the evalua-

tion of existing methods is performed on synthesized data

alone, whose acoustic properties can be largely different

from real-world signals.

There might not be feasible non-overlapping peaks for

the masked, higher notes (e.g., A5) in real-world signals.

As Fig. 1 exemplifies, although the second harmonic of

A4 and the f0 of A5 coincide at position ‘A’, the ampli-

tude of A4+A5 at ‘A’ is smaller than A4 and A5, possibly

due to destructive interference or nonlinear effects. At po-
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Figure 2. The scheme for octave classification — discrim-

inating a single note from the corresponding octave dual-

tone.

sition ‘B’, the peak amplitude of A4+A5 is larger than the

sum of A4 and A5, which might also be a nonlinear phe-

nomenon. Due to inharmonicity [13, 14] and longitudinal

string modes [15, 14], the harmonic series in higher fre-

quency start to deviate from the integer multiples and get

irregular. Peak pairs ‘C, D’ and ‘E, F’ of A4+A5 are con-

cerned by such effects. The additivity assumption of the

magnitude spectra turns out to be too strong, in view of the

interference with phase or nonlinear effects accompanying

an octave dual-tone.

Since most MPE algorithms have stronger ability in re-

calling the lower note of an octave dual-tone, the octave

ambiguity problem may be posted in an alternative way:

how to distinguish between a single note and its corre-

sponding octave dual-tone? As a preliminary attempt, we

formulate this as a binary classification problem and exper-

iment with a variety of spectral-, cepstral- and phase- de-

rived features in the context of such an octave classification

problem. In addition, a new real-world octave dataset of

piano and guitar sounds with various dynamics and play-

ing styles is collected for a systematic evaluation. Both

real and synthesized signals are considered on a single-

note level. Although we understand that it is important to

evaluate the effect of the proposed octave classifier directly

in the context of MPE, we opt for leaving this as a future

work and concentrate on the issue of octave classification

in this paper.

We carefully design six different experiments to gain in-

sights from this study. In what follows, we describe the

proposed system and evaluation framework in Sections 2

and 3, the experiment results in Section 4, and we draw

conclusions in Section 5.

2. APPROACH

Octave classification can be understood either in the con-

text of timbre classification or as a special case of classifi-

cation based MPE [16]. The basic idea is to learn a audio-

based binary classifier that discriminates a single note and

its octave dual-note counterpart. As depicted in Figure 2,

the system mainly contains a feature extraction step and a

classification step. We use linear support-vector machine

(SVM) [17] for classifier training here.

In particular, we assume that in a practical MPE system

octave classification can be used as a refining and cali-

bration procedure after a set of note candidates has been

selected [5, 6]. For example, after an A4 has been de-

tected, octave classification further verifies the presence of

the upper note A5 in the signal. Therefore, in the proposed

scheme we assume that the f0 of the lower note is known

a priori, and train a binary classifier for each pair of sin-

gle note (with a specific f0) and the corresponding octave

dual-tone.

To identify audio features relevant to the proposed task,

we evaluate the following features. The most fundamental

one is the spectrogram (SG) ‖Mh
x‖

2, which is the squared

magnitude of the short-time Fourier transform (STFT):

Shx (t, ω) = Mh
x (t, ω) e

jΦh

x
(t,ω) , (1)

where x and h denote the time domain signal and the win-

dow function, respectively. We use the dB-scaled discrete

spectrogram X(n, k) ∈ R
N×K , where n is the time index,

k is the frequency index, N is the number of short-time

frames, and K is the number of frequency bin. In addi-

tion, we consider two variants of spectral-based features

— the frame-level autocorrelation function of the magni-

tude spectrum (SG-ACF):

ACF (n, k) =
K−l
∑

l=0

X(n, l)X (n, k + l) , (2)

and the second harmonic difference (SG-D):

D(n, k) = X (n, k)−X(n, 2k) , (3)

where 1 ≤ k ≤ ⌊K/2⌋. The latter is a new feature we

design for this task; it tries to capture the behaviors of the

components which frequencies differ by two. We also con-

sider the Mel-frequency cepstral coefficients (MFCC), a

classic feature in instrument timbre classification [5]. The

last feature of interest is the instantaneous frequency devi-

ation (IFD), defined as the temporal derivative of the phase

angle Φh
x of STFT:

IFDh
x (t, ω) =

∂Φh
x (t, ω)

∂t
= Im

(

SDh
x (t, ω)

Shx (t, ω)

)

(4)

where Dh (t) = h′ (t). In discrete implementation, IFD

in Eq. (4) indicates the deviation of frequency component

from the discrete bin to the actual value. Therefore, IFD

provides a good calibration under either low spectral reso-

lution or high spectral leakage. Please refer to [18, 19] for

more discussions and detailed derivation of IFD.

While ACF and IFD have been regularly applied in MIR

problems such as onset detection and tempo estimation, the

SG-D feature is relatively novel and can be viewed as a fea-

ture that is designed for octave classification. On the other

hand, in our empirical evaluation we consider well-known

features such as ACF and MFCC as the task of supervised

octave classification has not been well studied before.

3. DATASETS

In view of the possible difference between real-world oc-

taves and synthesized ones, a rich set of six different datasets

featuring different characteristics is employed in this study.

As Table 1 shows, we take two different piano subsets
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Table 2. Experimental settings and the accuracy for each feature, with the best two highlighted for each experiment

EXP #1 EXP #2 EXP #3 EXP #4 EXP #5 EXP #6

Training set Piano 1 (Syn) Piano 3 (Syn) Piano 3 (Real) Piano 3 (Syn) Piano 1 (Syn) Guitar 1 (Real)

Test set Piano 2 (Syn) Piano 4 (Syn) Piano 4 (Real) Piano 4 (Real) Piano 4 (Real) Guitar 2 (Real)

SG 0.740 0.595 0.612 0.566 0.450 0.722

SG-ACF 0.630 0.428 0.633 0.429 0.453 0.687

SG-D 0.756 0.650 0.663 0.629 0.625 0.719

MFCC 0.686 0.637 0.645 0.636 0.561 0.768

IFD 0.684 0.686 0.658 0.651 0.645 0.832

SONIC [21] 0.693 0.593 0.578 0.578 0.578 —

Table 1. Description and number of notes of the six

datasets

Name Record
#single #synthetic #real

notes octaves octaves

Piano 1 studio 792 684 -

Piano 2 (RWC [20]) 792 684 -

Piano 3
home

525 453 684

Piano 4 788 680 683

Guitar 1 studio 264 - 177

Guitar 2 home 249 - 122

with different brands, referred to as ‘Piano 1 and 2,’ from

the RWC instrument dataset [20]. RWC contains studio-

recorded single notes of over 50 instruments with various

brands, playing techniques, pitches and dynamics.

For other four remaining datasets we use in this study,

four musicians with different professional levels are paid,

and asked to play single notes and octave dual-tones in

all possible pitch ranges of piano and guitar, with differ-

ent musical dynamic levels (forte, mezzo forte and piano)

and playing techniques (normal, pedal and staccato for pi-

ano and normal for guitar). Except for ‘Guitar 1,’ all these

sound samples are home-recorded, meaning more noises,

reverberation and other possible defects prevalent in real-

world recordings. Because we are also interested in com-

paring real octaves and synthetic ones, we also synthesize

octave dual-tones by additively mixing the single notes of

the four piano datasets.

For piano, the pitches of single-note data range from A0

to C8, while octave data range from A0+A1 to C7+C8.

The pitch range of guitar is narrower, ranging from E2 to

D6 for single notes, with some duplicated pitches played

on different strings, and E2+E3 to D5+D6 for octave data.

Not surprisingly, we have less guitar data than piano data.

In the course of this study, we have compiled a new dataset

of 1,313 piano single notes, 1,367 piano octaves, 513 gui-

tar single notes, and 299 guitar octaves contributed by four

musicians. For reproduciblity and for calling more atten-

tion to this problem, the audio files of the sound recordings

are publicly available online. 1

1 http://mac.citi.sinica.edu.tw/PitchOctave

4. EXPERIMENTS

The music signals are sampled at 44.1 kHz. As described

in Section 2, five features are adopted: spectrogram (SG),

SG-ACF, SG-D, MFCC and IFD. We use a Hanning win-

dow h of 2,048 samples and 20% hopping for STFT, nor-

malize all the considered frame-level features by l2-norm,

and aggregate frame-level features to song-level ones by

taking sum-pooling across time, before using the song-

level features as input to SVM. We use the linear SVM

implemented in the LIBLINEAR library [17]. Moreover,

we optimize the SVM parameter C from a search range of

{2−10, 2−9, . . . , 210} through a validation set and then fix

the value to 2−2. The features are processed by a sum-to-

one normalization after aggregation. As pitch information

is assumed to be known, we train a binary octave classifier

for each pitch.

We conduct six experiments in a cross-dataset scheme by

using different datasets for training and testing. The base-

line accuracies of all experiments are all 0.5. The result is

summarized in Table 2 with details discussed below.

4.1 Average behaviors

4.1.1 Comparison of features

By comparing the features across the experiments, we see

that SG-D and IFD are the most reliable features for oc-

tave classification; the former obtains the best accuracy for

EXP #1 and #3, while the latter represents the best one for

the other four. SG-D consistently outperforms SG and SG-

ACF for most cases, which is expected as it is designed

specifically for this task. On the other hand, IFD repre-

sents a competitive alternative for both piano and guitar

sounds, showing that phase-based feature can also be ef-

fective. Lastly, the performance of MFCC appears to be

moderate.

4.1.2 Studio recording versus home recording

We can study the effect of recording environment by com-

paring the result for EXP #1 and #3. Table 2 shows severe

accuracy degradation for SG and SG-D (> 10%), but not

severely so for IDF and MFCC (< 5%). This shows the

performance of spectral features is more sensitive to noises

and other defects in a room environment. It also shows that

only using studio recordings in an evaluation could lead to

overly optimistic result. This justifies the use of the last

four datasets.
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4.1.3 Synthetic octaves versus real octaves

The effect of synthetic versus real octaves can be studied

by comparing EXP #2 and #3, both of which use Piano 3

for training and Piano 4 for testing. We see that the per-

formance difference between the two experiments seems

to be mild (< 3%), except for SG-ACF (> 20%). EXP #4

and #5 further evaluate the result of using synthetic data to

predict real-world data. Comparing these results with that

of EXP #3 (i.e., using real-world data to predict real-world

data), we observe that the accuracies of SG and SG-ACF

drop severely (5–20%), whereas the result of SG-D and

IFD does not alter much (< 4% and < 2%, respectively).

This result demonstrates the effect of dataset mismatch (in

terms of synthetic versus real octaves) and shows that IFD

stands for the best choice if we are only given synthetic

data for training the octave classifier.

4.1.4 Piano versus guitar

By comparing EXP #3 and #6, octave classification is found

easier for guitar than for piano, possibly due to less nonlin-

ear effects as a result of narrower pitch and dynamic ranges

for guitar. For example, the accuracy of IFD attains 0.658

in EXP #3 but 0.832 for EXP #6. Interestingly, we also

find that SG-D does not work so well for guitar as for pi-

ano, possibly because the inharmonicity of guitar string is

generally smaller than that of piano string, as reported be-

fore [14, 22].

4.1.5 Comparison with an MPE algorithm — SONIC

Finally, we compare the result of the proposed classification-

based approach against ‘SONIC,’ a state-of-the-art, publicly-

available MPE algorithm specialized in piano music tran-

scription [21]. Although it is virtually impossible to com-

pare the performance absolutely fair, a prediction of SONIC

is considered correct if it returns an octave combination

(regardless of the number of notes returned) for an octave

dual-note, and if it returns only one note (regardless of its

pitch estimate) for an single note. As SONIC is designed

for piano, we do not use it for EXP #6. As Table 2 shows,

the performance of SONIC is generally inferior, especially

when SG-D or IFD is used. The performance gap is more

pronounced for real octaves (i.e., EXP #3–#5).

4.2 Pitchwise behaviors

Figures 3(a) and 3(b) show the average accuracy for each

pitch (in MIDI number) of piano (EXP #3) and guitar (EXP

#6), respectively. Here the pitch number denotes the actual

pitch of a single note or the lower pitch of an octave dual-

tone. The pitch information is provided in the upper and

lower margins of the figures, with the range correspond-

ing to the available notes for piano and guitar, respectively.

We see non-smooth trends going from low to high pitches,

but generally a bell-shape is observed for both instruments.

This can be due to the insufficient frequency resolution for

low-pitched signal and limited amount of harmonic infor-

mation for high-pitched signal. The performance variation

seems to be larger for guitar, which can be due to the nature

of the instrument or the less amount of available data.

(a)

(b)

Figure 3. Pitchwise accuracies of (a) cross-dataset octave

classification for piano (EXP #3) and (b) for guitar (EXP

#6).

5. CONCLUSIONS

In this paper, we have presented a novel classification-based

system for distinguishing between single notes and the cor-

responding octave dual-tones. A systematic performance

study that investigates different audio features and test cases

in a cross-dataset setting validates the effectiveness of the

proposed approach for either synthetic or real-world sig-

nals. The best accuracy of octave classification for piano

ranges from 64.5% to 75.6% across experiment settings,

whereas the accuracy for guitar attains 83.2%. Relatively

more reliable estimate is observed by using either the sec-

ond harmonic difference of spectrogram or the instanta-

neous frequency deviation as features. For future work, we

are interested in incorporating the idea to MPE, perhaps us-

ing more advanced features that are designed for this task.

A study on other intervals (e.g., twelfths and double oc-

taves) is also underway.
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