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ABSTRACT

We conduct a systematic comparison of several probabilistic
models of symbolic music, including zeroth and first order
Markov models over pitches and intervals, a hidden Markov
model over pitches, and a probabilistic context free gram-
mar with two parameterisations, all implemented uniformly
using a probabilistic programming language (PRISM). This
allows us to take advantage of variational Bayesian methods
for learning parameters and assessing the goodness of fit of
the models in a principled way. When applied to a corpus
of Bach chorales and the Essen folk song collection, we
show that, depending on various parameters, the probabilis-
tic grammars sometimes but not always out-perform the
simple Markov models. On looking for evidence of over-
fitting of complex models to small datasets, we find that
even the smallest dataset is sufficient to support the richest
parameterisation of the probabilistic grammars. However,
examining how the models perform on smaller subsets of
pieces, we find that the simpler Markov models do indeed
out-perform the best grammar-based model at the small end
of the scale.

1. INTRODUCTION

Music usually exhibits a great deal of what is loosely called
‘structure’, both in acoustic and symbolic form, and over
both local and global time scales. What exactly we mean by
‘structure’ could be discussed at great length, for example, in
terms of relationships between parts, repetition, transforma-
tion, variation, not to mention specifically music-theoretic
concepts such as scale, harmony, tonality and so on. One
rather general approach to the notion of structure grew out
Shannon’s information theory [1], which prompted some
psychologists [2, 3] to suggest that our perceptual systems
are attuned to the detection of redundancy (an information
theoretic concept) in sensory signals. Redundancy occurs
when a sensory signal tells us something we already know,
either from prior experience or from another part of the
same sensory signal. Given the probabilistic underpinnings
of information theory, this means, essentially, that redun-
dancy is any departure from complete unpredictability, and
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this, we would argue, a good definition of what we mean by
‘structure’. As animals in the world, detecting redundancy,
especially over time, is a good thing to do, as it enables
us to make predictions about what is coming next and to
prepare for it accordingly. It has been said that ‘the purpose
of perception is to make the world seem less surprising’;
in learning not to be surprised by a thing, we are forced to
notice all the ways in which certain parts or aspects of that
thing tell us about its other parts or aspects. This is the basis
of our sense of its structure.

These ideas lead us firmly to probabilistic modelling as a
way to understand both perception and structure, and there-
fore, by extension, musical structure; indeed, probabilistic
modelling has been at the heart of music informatics for
the last ten years or more, and before that, the role of ex-
pectation in shaping the listening experience had long been
recognised [4, 5].

In the following sections, we will discuss some of the
issues around probabilistic modelling (§ 2), probabilistic
models of symbolic music (§ 3), and the use of probabilistic
programming as a flexible environment in which to develop
such models (§ 4). We will then describe the particular mod-
els we implemented and present the results of fitting these
models in a number of variations to a corpus of symbolic
music. We will take, for the sake of brevity, a rather less
than rigorous approach to writing probability formulae, and
will use the convention that, for example, P(z|y) denotes
for a conditional probability where x and y are the values
of random variables left implicit given the context.

2. PROBABILISTIC MODELLING AND MODEL
SELECTION CRITERIA

A probabilistic model of a domain is basically an assign-
ment of probabilities to things that may occur in that domain.
It is these probabilities which determine how surprising a
thing is and, in temporal domains, how it might continue.
In the sequel, when we say ‘model’, we mean probabilis-
tic model. The discussion of models and data may seem
somewhat removed from musical matters, but the reader
should bear in mind that in application, ‘data’ becomes one
or many pieces of music in symbolic form, and a ‘model’
can embody anything from a structural analysis of a single
piece to an entire music theory for a large corpus. Hence,
this section is concerned with answering the questions, ‘how
do we recognise a good music analysis when we see one?’;
‘how do we recognise a good music theory when we see
one?’
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In order to be able to adapt to new situations (for example,
new styles of music), we must be able to build or adapt
models on the basis of observations. Even when listening to
an individual piece of music, our expectations are fluid and
adaptable: a theme or motif is less surprising in reprise than
on initial presentation. When there is only a finite amount
of data, it is not possible to pin-down a single ‘correct’
model, and we need a way to evaluate candidate models
against each other to establish which one is likely to give the
best predictions. In machine learning, this is the problem of
model selection, and brings up a number of issues which are
familiar in that field. The use of an overly complex model
with many parameters that must be inferred from the data
can result in over-fitting when applied to too small a dataset,
resulting in poor generalisation, that is to say, the model
becomes tightly coupled to the intimate, accidental details
of the data and fails to recognise (is surprised by) more data
of the same sort. On the other hand, an overly simple model
might not be capable of capturing the regularities that are in
the data. Some way of managing the trade-off is required.

Although there are other methods (such as cross-validation),
Bayesian model selection criteria offer a theoretically and
philosophically appealing solution to this problem [6, 7].
The fundamental basis of Bayesian inference is the consis-
tent use of probabilities to represent the uncertainty of the
agent doing the inferring about all entities under considera-
tion, including models and their parameters. ! For example,
given an agent committed to a parameterised model M, the
agent does not initially know how the parameters 6 should
be set, and must represent this uncertainty as a prior proba-
bility distribution P(6|.M). Then, on observing some data
D, the agent should update its ‘belief state’, giving, not a
point estimate of 6, but a posterior probability distribution

DI, M)P (6| M)
PDIM)

P, M) = T m
which takes into account both the prior and the likelihood
that the model with parameters 6 could have produced the
observed data. The reason why this is the correct policy is
that, in order to make the best possible prediction of a new
piece of data d, given the model and observations so far, the
agent needs to compute

P(dD, M) = /P(d,9|D,M) d6
_ / P(d|0, M)P(0|D, M) do.

This means the agent can forget about the data D as long
as it remembers the posterior distribution P(6|D, M). The
denominator in (1) is known as the evidence and can be
computed as

P(DIM) = /P(D\G,M)P(GM/!) 0. @

If there are several candidate models My, ..., My, then
the whole inferential process is lifted from distributions

! Tf we choose to represent degrees of belief as real numbers, probability
theory is the only consistent method for reasoning under uncertainty [8].
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over parameters to distributions over models, with prior
P(M;) and posterior

P(D|M;)P(M;)

3

If the agent is initially uncommitted to any particular model,
so P(M,) is relatively flat, then we can see that the evi-
dence P(D|M) plays the key role in determining the rel-
ative plausibility of the models after the data has been ob-
served. The committed Bayesian will work with this poste-
rior distribution to make predictions and decisions (this is
model averaging), but forced to make a choice, perhaps be-
cause of limited computational resources for keeping track
of multiple models, a reasonable policy is to pick the model
with the greatest evidence.

If a model is too simple, then it may not be able to fit the
data and ends up assigning low probability to our given
dataset D, resulting in low evidence. If it is too complex,
then it may be able to fit our given dataset well, but also
many other possible datasets. It assigns significant probabil-
ity to a greater variety of datasets and therefore less to any
particular dataset, also reducing the evidence. Hence, using
the evidence as the model selection criterion automatically
penalises models which are more complex than the data can
support, giving a formal expression of Ockam’s razor, the
philosophical principle that, other things being equal, we
should choose the simplest explanation.

Another view on simplicity is provided by the minimum
message length principle [9] (and the related minimum de-
scription length [10]) which states that we should adopt
a model that allows us to produce the shortest possible
description of the data, including the description of any
model parameters. However, given the close relationship be-
tween compression and probabilistic structure, this leads to
a conclusion which is essentially the same as the Bayesian
approach [11], modulo some minor differences [12].

Representing uncertainty about model parameters, com-
puting the evidence and doing model averaging can be
expensive operations computationally and approximations
are often needed. For some models, variational Bayesian
learning [13, 14] can be a good solution, combining an effi-
cient representation of uncertainty about parameters with a
tractable learning algorithm, delivering an estimate of the
evidence, as a function of the variational free energy F'.
We omit the details of how this is defined, but note that the
algorithm works to minimise F' by adjusting its approxi-

mation of the posterior (1), and F' is an upper bound on
—log P(D|M), that is,

—log P(D|M) < F, 4)

and so, after learning is complete, we can use F' instead of
the true evidence for model comparisons. Thus, we come
to the methodology we adopt for our subsequent modelling
experiments: given a dataset and number of candidate mod-
els, we fit each model using variational Bayesian learning
and use the variational free energy to compare them: the
lower the free energy, the better the model.

- 15625 -



Proceedings ICMC|SMC|2014

3. MODELLING SYMBOLIC MUSIC

Probabilistic models of symbolic music can, to a large ex-
tent, be divided into two broad classes: those based on
Markov (n-gram) models, and those based on grammars.
While fixed-order n-gram models have problems avoiding
over-simplicity for low n and over-fitting for high n, vari-
able order Markov models have been used successfully to
model monophonic melodic structure [15, 16] and chord se-
quences [17]. We review grammar-based models below and
discuss the relationship between the two classes in § 3.2.

3.1 Grammar-based models

Formally, a context free grammar (CFG) consists of a set of
terminal symbols, a set of non-terminal symbols, a set of
production rules describing how each non-terminal can be
rewritten as a sequence of terminals or non-terminals, and a
distinguished non-terminal called the start symbol. A prob-
abilistic CFG (PCFG) adds to this a probability distribution
over the possible expansions of each non-terminal.

Grammars have been applied in computational musicol-
ogy since the late 1960s [18, 19, 20], resulting in influential
theories like Lerdahl and Jackendoft’s Generative Theory of
Tonal Music [21] and Steedman’s jazz chord sequence gram-
mar [22]. However, probabilistic grammar-based models of
music are a relatively recent development, broadly falling
into two groups: models of harmonic sequence [23, 24],
and models of melodic sequence [25, 26, 27]. We focus on
melodic models only in this paper.

Gilbert and Conklin [26] applied a PCFG to melodic struc-
ture analysis, drawing parallels between their approach and
the hierarchical graphs of Schenkerian analysis [28], that
also attempts to account for the details of melodic struc-
ture in terms of elaborations of simpler underlying forms.
Schenker’s elaborations are similar to grammar production
rules, but because some of them (such as the introduction of
neighbour notes or passing notes) depend on two adjacent
notes, they cannot be written as a context free grammar if
the melody is represented as a sequence of pitches. By rep-
resenting melody as a sequence of pitch intervals, Gilbert
and Conklin were able to devise a CFG that embodies four
type of melodic elaboration illustrated thus (as in figure 1
of [26]):

repeat. —e— ~r —e—e—
neighbour: —e—e— ~> —0® o
passing: e~ —e e
escape:  TC e~ e

Mavromatis and Brown [29] reported that they were able
to design a CFG for Schenkerian analysis by adopting the
same policy of elaborating interval sequences. Kirlin and
Jensen [27] also base their probabilistic model of musical
hierarchies on the elaboration of intervals, but adopt Yust’s
[30] triangulated graphs as their structured representation,
rather than the trees of conventional grammatical analysis.

Other attempts to formalise Schenkerian analysis that are
not explicity probabilistic but do incorporate heuristics to
guide the search for reductions include work by Ebcioglu
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[31] and Marsden [32]. Marsden in particular discusses
how adopting an interval-based encoding, to avoid the need
for context-dependent rules, leads to problems if the gram-
mar is developed further to model durations and to cover
more types of elaboration. > Nonetheless, we will base our
probabilistic grammar on that of Gilbert and Conklin.

3.2 Markov- vs Grammar-based models

The contrast between Markov-based and grammar-based ap-
proaches reflects a similar division in computational linguis-
tics, where probabilistic grammars and statistical parsing are
widely used for tasks where the hierarchical structure of a
syntactic analysis is required (e.g. language understanding).
Such approaches do not perform as well as n-gram models
in assigning probabilities to sentences. This was discussed
in 1998 by Brill et al [33], and, while n-gram and grammar
based models have both advanced since then, variable order
Markov models continue to out-perform grammatical mod-
els (e.g. [34]). It appears that what Markov models lack in
linguistic sophistication they more than make up for in the
raw statistical power of learning which words tend to occur
together regardless of syntax. In computational musicology,
a systematic framework for comparing across models has
yet to be established despite increasing research activity
using probabilistic grammars.

We propose that such a framework can be provided using
variational Bayesian learning within a probabilistic pro-
gramming language able to support a wide variety of mod-
els. We have begun with small number of relatively simple
models, but the framework will support the exploration of
increasingly sophisticated models such that robust musico-
logical conclusions can be drawn about their relative merits
when applied to a variety of musical corpora.

4. IMPLEMENTATION

Probabilistic programming Probabilistic programming
languages aim to provide an environment where a wide
variety of probabilistic models can be defined succinctly
and in a way that goes beyond such formalisms as Bayesian
networks, by making available powerful constructs that are
familiar from ordinary programming languages, such as
abstraction, recursion, and structured data types. The earli-
est grew out of probabilistic logics developed in the logic
programming community [35, 36, 37], but very soon an
alternative branch of the family was developed based on
concepts from functional programming [38, 39]. More re-
cently, interest in this area has grown quite considerably and
there are many languages, each exploring various aspects
and implementation strategies, for example [40, 41, 42].

We adopted a language called PRISM (PRogramming
In Statistical Modelling), which has been in development
since 1995 [36]. As it is based on Prolog, it inherits logic
programming features such as logic variables and powerful
meta-programming facilities.

2 Even with the repeat elaboration, there are subtleties to consider:
should an interval of N semitones be expanded to O N, or N 0? The
answer relates to whether we associate the interval with the time-span of
the first or the second note in the interval respectively. Gilbert and Conklin
follow the latter convention; we, in our grammar, the former.
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PRISM was chosen because it has several features that
make it suitable for implementing probabilistic grammars.
Firstly, because it inherits Prolog’s definite clause grammar
(DCG) notation, CFGs can be encoded very succinctly. Sec-
ondly, because it inherits and relies on the underlying Pro-
log’s tabling mechanism, the process of parsing replicates
the structure and computational complexity of Earley’s effi-
cient chart parsing algorithm without any special effort by
the programmer [43].3 Thirdly, PRISM provides parameter
learning mechanisms that subsume standard expectation
maximisation (EM) and variational Bayesian (VB) methods
[44, 40]. This enables us to compare models on the basis of
variational free energy, as discussed in § 2.

PRISM has been used for implementing probabilistic gra-
mars for natural languages and estimating their parame-
ters [45] and for doing grammar induction using VB for
model selection [44]. PRISM has also been used for music
modelling, but using a hidden Markov model rather than a
grammar-based model [46].

4.1 Implementing PCFGs in PRISM

A PCFG can be easily implemented in PRISM by writ-
ing a DCG interpreter with probabilistic choice between
alternative rule head expansions. In ordinary Prolog, DCG
rules (non-terminals) can be parameterised and arguments
used to represent such linguistic phenomena as number or
tense agreements * . Augmenting a DCG with probabilities
presents some difficulties which become apparent in the
implementation. The problem is that unification, inherent in
DCG processing, amounts to the imposition of constraints
and can result in failure. Introducing failure into a prob-
abilistic program results in a significant complication of
inference and learning [47].

For our purposes, the problem of failure can be avoided by
breaking the rule expansion process into two stages: first,
a given non-terminal is matched against all applicable rule
heads, and for each rule that matches, its optional guard (an
ordinary Prolog goal) is executed. Rules with successful
or absent guards are collected and then chosen from proba-
bilistically. The bodies of these rules are not allowed to fail.
Any constraints which might cause failure must be encoded
in the rule heads or the guards. Thus our DCG language is
similar to standard Prolog DCGs but, instead of the usual
Head — Body notation, rules are written in one of two
forms (notes on Prolog syntax can be found in appendix A):

Head :: Label — Body.
Head :: Label = Guard |Body.

Label is an atom that is unique for different clauses of
the same nonterminal, and Guard is an ordinary Prolog
goal that can only use variables in Head. A terminal sym-
bol X is written out using +X instead of [X], and nil is
used instead of [] for an empty rule body. Finally, PRISM
switches, which are PRISM’s primitive for probabilistic

3 For a variety of models, tabling results in efficient probability computa-
tions equivalent to the optimal special purpose algorithms for those models,
such as the forwards-backwards algorithm for HMMs, the inside-outside
algorithm of PCFGs, and belief propagation in Bayesian networks.

4 Indeed, the DCG formalism is Turing complete and can therefore, in
principle, represent any linguistic phenomenon.
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choice and represent learnable probability distributions, can
be sampled using goals of the form Val~Switch, which cor-
responds to the PRISM goal msw(Switch,Val). The range of
values for a given switch is determined by a corresponding
values(Switch,Values) clause.

All of this can be illustrated with reference to the program
in fig. 3. The neighbour note rule (labelled neigh) applies to
the expansion of a non-terminal i(P), where P is a pitch in-
terval in semitones, but only when P=0. The deviation P/ to
the neighbour note is sampled from a random switch called
step, and is between -4 and 4. The rule labelled term shows
how a non-terminal i(P) can produce a terminal symbol, in
this case, the integer P.

Parameterisation of rule expansion distributions Pro-
grams written in our DCG language define the permissible
expansions for non-terminals with arguments, but not how
the probability distributions over those expansions are pa-
rameterised. We implemented two approaches. The first is
to treat each ground instance of each rule (that is, with defi-
nite values for all variables) as an independent PCFG rule
with its own distribution that can be learned from examples.
This corresponds to the “rule schema” approach adopted by
Gilbert and Conklin, and we will refer to it as the “ground
head” parameterisation.

An alternative is to collect together all rule heads with the
same functor and arity and which lead to the same set of
applicable expansions, and have them share a single proba-
bility distribution. For example, in fig. 3, all non-terminals
of the form i(P) where the absolute value of P is between 6
and 16 share the functor i/1 and can be expanded using the
rules term, rep and esc. Thus, under this “head functor” pa-
rameterisation, they share the same probability distribution
over those three expansion rules. This approach generally
produces a model with fewer parameters, which could poten-
tially reduce the likelihood of over-fitting to small datasets.

5. EXPERIMENTS

Using the implementation framework described above, we
conducted an experiment to compare the performance of
several models on a corpus of monophonic melodies. We
used a corpus of scores in Humdrum/Kern format, com-
prising three datasets, all available from the Kern Scores
website at http.://kern.humdrum.org. The first is a set of 185
Bach chorales, BWV 253-438 excluding 279. This is the
dataset that was used by Gilbert and Conklin. The second is
a larger set of 370 Bach chorales. The third is the Essen folk
song collection, containing 6174 scores. Because the full
Essen collection was too large to process with the Gilbert
and Conklin grammar on our test computer (an Apple laptop
with 8 GB of memory), we took two random subsets of 1000
scores each. These datasets will be referred to as chorales,
chorales371, essen1000a and essenl000b respectively.

5.1 Methods

A total of seven probabilistic models were implemented
as PDCGs. Pitches are encoded as MIDI note numbers,
while interval-based models assume an input encoded as
a list of integers followed by the Prolog atom end. This is
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values(nnum, X) :— numlist(40,100,X).
values(mc(_), X) :— values(nnum,X).
values(hme(), X) :— num_states(N), numlist(1,N,X).
values(obs(_), X) :— values(nnum,X).

% start symbol for plgram
sO:: tail — nil.
s0:: cons —> X~nnum, +X, sO.

% start symbol for p2gram
sI(_) 2 tail = nil.
sI(Y) 2 cons = X~mc(Y), +X, s1(X).

% start symbol for phmm
sh(_) 1 tail = nil.
sh(Y) 2 cons = X~hmc(Y), Z~obs(X), +Z, sh(X).

Figure 1. PDCGs for 0™ and 1% order Markov chains and 1%
order HMMs over pitch (encoded as MIDI note number). The
number of states in the HMM is a parameter of the model.

values(ival, X) :— numlist(—20,20,X).
values(me(_), X) :— get_values(ival,X).

% start symbol for ilgram
s0:: tail — +end.
s0 :: cons —> X~ival, +X, s0.

% start symbol for i2gram
sI1(L) 1 tail — +end.
sI(Y) :: cons = X~mc(Y), +X, s1(X).

Figure 2. PDCG for 0 and 1% order Markov chains over pitch
interval to next note in semitones.

because we chose to represent each note by the pitch interval
to the following note, and the last note has no following
note. As we develop the models to handle other musical
dimensions (e.g. duration, metrical strength, articulation
etc.), the attributes of the last note can be associated with
the end symbol. The models, with their short names, are:

1. 0™ order Markov model over pitches (pIgram).

2. 1% order Markov model over pitches (p2gram).

3. 1% order hidden Markov model over pitches (phmm).
. 0" order Markov model over intervals (il gram).

. 1%t order Markov model over intervals (i2gram).

[©) WS, B SN

. Modified Gilbert and Conklin grammar with grounded
head parameterisation (gilbert2).

7. Modified Gilbert and Conklin grammar with head
functor parameterisation (gilbert3).

The DCG rules for all of these models are shown in fig. 1
(plgram, p2gram and phmm), fig. 2 (ilgram and i2gram),
and fig. 3 (gilbert2 and gilbert3 share the same rules and
differ only in their parameterisation). We have omitted some
supplementary code for intialising the switch probabilities
and other ancillary tasks, as well as the DCG interpreter
itself; these are available from the authors on request.

values(step, X) :— numlist(—4,4,X).
values(leap, X) :— numlist(—16,16,X).
values(passing(N), Vals) :—

( N>0 — M is N—1, numlist(1,M,I1)

; N<O — M is N+1, numlist(M,—1,11)

),

maplist(N1, (NI,N2),N2 is N—N1.11,Vals).

values(escape(N), Vals) :—
(N<O — 11 =11,2,34]
; N>O — 11 = [—1,—2,—-3,—4]
),
maplist(N1,(N1,N2),N2 is N—NI,11,Vals).

% start symbol
s last = i(end).
s grow = P~leap, i(P), s.

i(P) :: term =— +P.
i(P) :: rep =i(0), i(P).
i(P) :: neigh = P=0 |

Pl~step, {P2is —Pl},i(Pl), i(P2).
i(P) :: pass = passable(P) |

(P1,P2)~passing(P), i(P1), i(P2).
i(P) = esc = escapable(P) |

(P1,P2)~escape(P), i(PI), i(P2).

passable(P) :— abs_between(2,5,P).
escapable(P) :— abs_between(1,16,P).
abs_between(L,UX) :— Y is abs(X), between(L,U.Y).

Figure 3. A grammar modelled on Gilbert and Conklin’s [26],
written in a DCG language defined in PRISM. maplist/5 and
between/3 are standard B-Prolog predicates and numlist(L,U,X) is
true when X is a list of consecutive integers from L to U.

All the Markov models use the head functor parameterisa-
tion, so for s0, s1(_) and sh(_) there is only one distribution
over the labels [tail, cons] which determines whether or not
the chain is terminated or continues. The transition distri-
butions are determined by the PRISM switches mc(_) and
hmc(_), and are distinct for each ground instance, as are the
observation distributions for the HMM.

Our version of Gilbert and Conklin’s grammar differs from
the original in two ways. Firstly, it uses a different mech-
anism for introducing new intervals not explained by any
of the elaboration rules: the s non-terminal is not param-
eterised by interval and simply expands into a sequence
of i(P) non-terminals, where the P are intervals chosen in-
dependently from the leap distribution. Secondly, because
an interval is associated with the former note of a pair, the
rep elaboration maps i(P) to i(0), i(P) and not i(P), i(0) as
in Gilbert and Conklin’s version. In our grammar, this has
the sense of subdividing the note with the repeated pitch,
whereas in Gilbert and Conklin’s, it is the preceding note
that is subdivided. This is clearer if one imagines that a
note has a duration which is also subdivided along with
the pitch interval. It would be possible to compare the two
approaches directly within this framework, but we have not
done this yet. Finally, the numerical ranges of steps, leaps,
and the limits for allowing passing or escape note introduc-
tions had to be chosen arbitrarily as this information was
not given in Gilbert and Conklin’s paper.
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Model performance by dataset
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Figure 4. Overall performance, in bits per note, of each model
against each dataset. The smaller the bpn is, the better the perfor-
mance. For each model/dataset pair, the bar shows the range values
obtained over the various parameter combinations described in the
text. The phmmN bars represent the HMMs with N states; the bars
for the chorales datasets extend off the top of the chart.

Parameterisation A number of ‘hyperparameters’ con-
trol the Dirichlet priors over the probability distributions for
each switch, affecting the shape of distributions (e.g. over
pitch intervals or absolute pitches) that might be expected to
be weighted towards a central value (e.g. zero in the case of
intervals, or a central register for absolute pitches). The dis-
tributions are given their expected shape by a weighted sum
of binomial and uniform distributions. The prior_weight
hyperparameter affects all distribution priors, effectively
determining the volume of data required to override prior
beliefs about the switch distribution. The complete set of
hyperparameters and their range of values is shown below.

prior_weight: {0.3,1,3,10,30}. % all models
prior_shape : shape_spec % for all Markov models

leap_shape :  shape_spec % for grammar models
pass_shape . shape_spec % for grammar models
num_states :  {1,2,3,5,7,12} % for HMMs
trans_self : {0,1} % for HMMs

shape_spec = {binomial, uniform, binomial+uniform}
U {binomial + K=uniform |K in {0.1,0.3}}

Subset selection We extracted subsets of elements from
each dataset to evaluate the effect of dataset size on com-
parative model performance and to investigate whether the
complex models over-fit to small datasets. Subsets of size 1
to 30 were considered, 10 subsets being chosen at random
from the full dataset in each case. The same subsets were
supplied to all models for training. Thus, each subset can
be identified by a dataset name, a size from 1 to 30, and an
index from 1 to 10.

5.2 Results

Fig. 4 shows a summary of the overall performance of each
model on each dataset, under a range of parameter values.
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To compare performance between datasets of different sizes,
the variational free energy in each case is divided by the
total number of notes in the dataset and displayed in ‘bits
per note’ (bpn). The data for pIgram, the 0™ order Markov
model over pitches, is not shown, as its best-case perfor-
mance was always worse than that of all the other models,
achieving at best about 3.7 bpn on the chorales.

The next-worst model is i/ gram. It performs worse than
p2gram, consistent with the fact that a pair of consecutive
pitches (a 2-gram) contains information about both pitch
interval and absolute pitch, while the latter is not available to
ilgram. If sparsity and over-fitting can be avoided, p2gram
should be able to make predictions at least as well as il gram.
The results show that even the smallest dataset chorales is
large enough to permit this.

The HMMs have the widest range of results, most likely
because the learning algorithm has a tendency to get stuck
in local optima. The HMMs, for larger state-space sizes, per-
form noticably better on Essen collection than on chorales.

Proceeding onwards, the p2gram and gilbert3 models over-
lap somewhat for the chorales, but not for the Essen col-
lection. Under their best (respective) parameter settings,
p2gram performs better than gilbert3 for all datasets. Per-
haps surprisingly, the PCFG in its less flexible (head functor
parameterisation) form is out-performed by a first order
Markov model over pitches, showing that one cannot as-
sume that a grammar-based model will always out-perform
even a first-order Markov model.

For all datasets, the best two consistently performing mod-
els are gilbert2 and i2gram. The latter achieves approxi-
mately 2.68 bpn on the chorales dataset with the parameter
settings:

prior_weight : 3,
leap_shape :  binomial + 0.1xuniform,
pass_shape :  binomial,

though the results are fairly insensitive to the pass_shape
parameter. This is comparable with the 2.67 bpn reported
by Gilbert and Conklin (bear in mind that the variational
free energy includes a model complexity penalty). It is
encouraging to note that the grammar-based model gives
the best account of both chorales datasets, although it is
beaten by the Markov model on the larger Essen datasets.
Considering that higher-order Markov models would be
likely to perform better still (since the Essen collection is
large enough to support a more complex model) this shows
that designing by hand a probabilistic grammar capable
of out-performing variable order Markov models is a non-
trivial task.

Fig. 5 shows how the models perform relative to each other
on the much smaller datasets obtained by extracting random
subsets from the chorales dataset. The graph shows how, for
smaller datasets, the simpler Markov models out-perform
the grammar-based models, with gilbert2 only emerging
as best with datasets of 20 or more pieces. The first order
Markov model over intervals, i2gram, though out-performed
for larger datasets, performed consistently well over the
whole range.
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Figure 5. Variation of model performance with dataset size. For
each subset size K, 10 random subsets of size K were extracted
from the chorales dataset. Then, for each model, the parameter
settings obtaining the best mean performance over the 10 subsets
were determined, and this mean performance was plotted against
the subset size. Though there is some random variation due to
the random subset selection mechanism, the graph clearly shows
how the most complex model, gilbert2, performs the worst for the
smallest datasets, even compared with p1gram.

6. DISCUSSION AND CONCLUSIONS

We have shown how a variety of probabilistic models of
symbolic music can be implemented in a framework of
probabilistic programming, and applied these to collections
of Bach chorales and the Essen folk song collection. It was
found that a probabilistic grammar-based on that of Gilbert
and Conklin [26] performed best on the Bach chorales,
acheiving performance comparable to that acheived by them
on the chorales dataset. However, an alternative, more parsi-
monious parameterisation of the same grammar performed
worse than a 1% order Markov model over pitch intervals.
On the Essen folksong collection, the grammar-based model
was beaten by the 1% order Markov model over intervals.
This may be due to the greater stylistic uniformity of the
chorales datasets and will be investigated in future work.
The relative success of the HMMs on the Essen collection
is also notable and worthy of investigation.

Focussing on the chorales, we found that, as the size of
the dataset decreases, the 1%t order Markov model over inter-
vals begins to out-perform the grammar-based model, until,
for very small datasets, the 0™ order Markov model over
intervals performs best. This highlights the need to consider
modelling assumptions carefully when dealing with small
collections of music, which may often be the case when
conducting an analysis of certain stylistically related pieces,
of which only a small number may exist.

It is likely that variable order Markov models will improve
significantly on the performance of i2gram, challenging us
to develop better grammar-based models. Our framework
and initial models provide a basis for such developments,
and a systematic exploration of probabilistic models of mu-
sic in both analysis and the development of music theory.
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A. PROLOG SYNTAX

Prolog code and data consist of terms built from a functor
and a number of arguments; e.g., a(10,0,X) is a term with
a head functor a/3 (because it has three arguments), and
arguments 10 (an integer), b (an atom or symbol), and X
(a logic variable). Atoms and functor names start with a
lower-case letter, while variable names start with an upper-
case letter or underscore. A solitary underscore (_) stands
for a variable whose value is not needed. Functors can be
declared as prefix, infix, or suffix operators, for example,
we declare ~ to be an infix operator, so the head functor of
P~leap is ~/2. The definite clause grammar (DCG) notation
allows grammar rules to be defined using clauses of the
form Head — Body, where Head is a term and Body is a
list of one or more comma separated DCG goals. Within
the body, a list [X.,Y,...] represents a sequence of terminals,
while a term enclosed in braces, { Goal} is interpreted as an
ordinary Prolog goal.
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